General Information of Drug Transporter (DT)
DT ID DTD0532 Transporter Info
Gene Name KCNT1
Transporter Name Potassium channel subfamily T member 1
Gene ID
57582
UniProt ID
Q9P2C5
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  1-Methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-Methyl-4-phenylpyridinium results in increased expression of KCNT1 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  2-palmitoylglycerol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2-palmitoylglycerol results in increased expression of KCNT1 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of KCNT1 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of KCNT1 3' UTR [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene affects the methylation of KCNT1 intron [7]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in increased methylation of KCNT1 promoter [10]

Regulation Mechanism

Transcription Factor Info

  benzo(e)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

benzo(e)pyrene results in increased methylation of KCNT1 intron [7]

Regulation Mechanism

Transcription Factor Info

  beta-methylcholine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-methylcholine affects the expression of KCNT1 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of KCNT1 gene [11]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol S co-treated with Fulvestrant results in decreased methylation of KCNT1 gene [11]

Regulation Mechanism

Transcription Factor Info

  Catechin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Catechin co-treated with Grape Seed Proanthocyanidins results in decreased expression of KCNT1 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  Fulvestrant

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of KCNT1 gene [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol S co-treated with Fulvestrant results in decreased methylation of KCNT1 gene [11]

Regulation Mechanism

Transcription Factor Info

  Methapyrilene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methapyrilene results in increased methylation of KCNT1 intron [7]

Regulation Mechanism

Transcription Factor Info

  theaflavin-3,3'-digallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

theaflavin-3,3'-digallate affects the expression of KCNT1 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid results in increased methylation of KCNT1 gene [15]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in increased methylation of KCNT1 intron [7]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenic affects the methylation of KCNT1 gene [9]

Regulation Mechanism

Transcription Factor Info

Natural Product

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of KCNT1 mRNA [13]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Hydrogen Peroxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydrogen Peroxide affects the expression of KCNT1 [1]

  Folic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Folic Acid inhibits the expression of KCNT1 [2]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of KCNT1 [3]

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of KCNT1 [5]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine increases the expression of KCNT1 [4]
References
1 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352.
2 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
5 Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 2014 May 8;5(5):e1222.
6 Direct effect of 2-palmitoyl glycerol on promotion of gamma aminobutyric acid synthesis in normal human fetal-derived astrocytes. FEBS Open Bio. 2023;13(7):1320-1332.
7 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
8 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
12 Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One. 2014;9(4):e95527.
13 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
14 Theaflavin 3, 3'-Digallate Delays Ovarian Aging by Improving Oocyte Quality and Regulating Granulosa Cell Function. Oxid Med Cell Longev. 2021;2021:7064179.
15 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.