General Information of Drug Transporter (DT)
DT ID DTD0488 Transporter Info
Gene Name SLC9A4
Transporter Name Sodium/hydrogen exchanger 4
Gene ID
389015
UniProt ID
Q6AI14
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  3-iodothyronamine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

SLC9A4 mRNA affects the uptake of 3-iodothyronamine [5]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC9A4 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC9A4 exon [9]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC9A4 gene [11]

Regulation Mechanism

Transcription Factor Info

  NSC668394

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC668394 results in increased expression of SLC9A4 mRNA [2]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine affects the susceptibility to Lipopolysaccharides which results in increased expression of SLC9A4 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

S-(1,2-dichlorovinyl)cysteine co-treated with Lipopolysaccharides results in increased expression of SLC9A4 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased expression of SLC9A4 mRNA [4]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in decreased methylation of SLC9A4 gene [7]

Regulation Mechanism

Transcription Factor Info

  aflatoxin B2

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aflatoxin B2 results in increased methylation of SLC9A4 intron [8]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol inhibits the expression of SLC9A4 [1]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite increases the expression of SLC9A4 [4]

Patented Pharmaceutical Agent

  NSC-668394

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC-668394 increases the expression of SLC9A4 [2]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution affects the expression of SLC9A4 [3]

  Caffeine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Caffeine results in increased phosphorylation of SLC9A4 protein [10]

Regulation Mechanism

Transcription Factor Info
References
1 17 beta-Estradiol Activates HSF1 via MAPK Signaling in ER alpha-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533.
2 Ezrin Inhibition Up-regulates Stress Response Gene Expression. J Biol Chem. 2016 Jun 17;291(25):13257-70.
3 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
4 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
5 Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology. 2009 Apr;150(4):1991-9.
6 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
7 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
8 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022;449:116110.
11 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
12 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.