General Information of Drug Transporter (DT)
DT ID DTD0403 Transporter Info
Gene Name SLC56A1
Transporter Name Sideroflexin-1
Gene ID
94081
UniProt ID
Q9H9B4
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC56A1 [1]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC56A1 [2]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC56A1 [3]

  Rifampin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rifampin inhibits the expression of SLC56A1 [4]

  Ivermectin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ivermectin inhibits the expression of SLC56A1 [5]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC56A1 [6]

Drug in Phase 3 Trial

  Curcumin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Curcumin inhibits the expression of SLC56A1 [7]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A inhibits the expression of SLC56A1 [9]

  Bisphenol B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol B increases the expression of SLC56A1 [17]

Drug in Phase 1 Trial

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC56A1 [12]

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite increases the expression of SLC56A1 [16]

Investigative Drug

  Coumestrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Coumestrol inhibits the expression of SLC56A1 [8]

Patented Pharmaceutical Agent

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG-001 inhibits the expression of SLC56A1 [14]

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde inhibits the expression of SLC56A1 [10]

Carcinogen

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC56A1 [15]

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of SLC56A1 [11]

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde inhibits the expression of SLC56A1 [13]
References
1 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet. 2014;29(4):333-40.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975.
6 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
7 Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol. 2008 Sep;39(3):312-23.
8 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
9 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
11 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
14 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
15 Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology. 2021 Jan 30;448:152652.
16 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
17 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.