General Information of Drug Transporter (DT)
DT ID DTD0390 Transporter Info
Gene Name SLC50A1
Transporter Name Sugar transporter SWEET1
Gene ID
55974
UniProt ID
Q9BRV3
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Carcinogen

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC50A1 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC50A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

Chemical Compound

  DT Modulation1

Valproic Acid results in increased methylation of SLC50A1 gene [3]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Cisplatin co-treated with jinfukang results in increased expression of SLC50A1 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Arsenic Trioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenic Trioxide results in decreased expression of SLC50A1 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC50A1 gene [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased expression of SLC50A1 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC50A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Catechin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Catechin co-treated with Grape Seed Proanthocyanidins results in increased expression of SLC50A1 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  ciglitazone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ciglitazone binds to PPARG protein alternative form which results in increased expression of SLC50A1 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  Dichlorodiphenyl Dichloroethylene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dichlorodiphenyl Dichloroethylene results in decreased expression of SLC50A1 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC50A1 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC50A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  Fulvestrant

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC50A1 gene [17]

Regulation Mechanism

Transcription Factor Info

  ICG 001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG 001 results in increased expression of SLC50A1 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Manganese

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC50A1 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  manganese chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC50A1 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  mono-(2-ethylhexyl)phthalate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

mono-(2-ethylhexyl)phthalate results in increased expression of SLC50A1 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  potassium chromate(VI)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC50A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

potassium chromate(VI) results in decreased expression of SLC50A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC50A1 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC50A1 mRNA [22]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  ochratoxin A

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ochratoxin A results in increased acetylation of SLC50A1 promoter [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

ochratoxin A results in increased acetylation of SLC50A1 promoter which results in increased expression of SLC50A1 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

ochratoxin A results in increased expression of SLC50A1 mRNA [11]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in increased expression of SLC50A1 mRNA [25]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC50A1 [1]

  Isotretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Isotretinoin inhibits the expression of SLC50A1 [2]

  Valproic Acid

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC50A1 [3]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC50A1 [4]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine increases the expression of SLC50A1 [5]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin increases the expression of SLC50A1 [6]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC50A1 [12]

Patented Pharmaceutical Agent

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG-001 increases the expression of SLC50A1 [8]

Natural Product

  Thapsigargin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thapsigargin increases the expression of SLC50A1 [7]

  Particulate Matter

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Particulate Matter increases the expression of SLC50A1 [10]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC50A1 [14]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang increases the expression of SLC50A1 [9]

Acute Toxic Substance

  Ochratoxin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ochratoxin A increases the expression of SLC50A1 [11]

  Acrylamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrylamide inhibits the expression of SLC50A1 [13]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine increases the expression of SLC50A1 [7]
References
1 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
2 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
6 Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
8 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 Diesel exhaust particulate associated chemicals attenuate expression of CXCL10 in human primary bronchial epithelial cells. Toxicol In Vitro. 2017 Dec;45(Pt 3):409-416.
11 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
12 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
13 Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol. 2020 Oct;144:111643.
14 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
15 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
16 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
17 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
18 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
19 Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One. 2014;9(4):e95527.
20 Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nucl Recept. 2005;3:3.
21 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
22 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
23 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
24 Exposure to the phthalate metabolite MEHP impacts survival and growth of human ovarian follicles in vitro. Toxicology. 2024;505:153815.
25 Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol. 2020 Sep;94(9):3137-3155.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.