General Information of Drug Transporter (DT)
DT ID DTD0361 Transporter Info
Gene Name SLC43A2
Transporter Name L-type amino acid transporter 4
Gene ID
124935
UniProt ID
Q8N370
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Copper Sulfate results in increased expression of SLC43A2 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Cisplatin co-treated with jinfukang results in increased expression of SLC43A2 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC43A2 3' UTR [32]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC43A2 5' UTR [32]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Diethylhexyl Phthalate results in increased abundance of mono-(2-ethylhexyl)phthalate which results in increased methylation of SLC43A2 gene [38]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-3-isobutylxanthine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol F results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid results in increased expression of SLC43A2 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  allyl 2,4,6-tribromophenyl ether

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

allyl 2,4,6-tribromophenyl ether results in increased expression of SLC43A2 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC43A2 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  beta-Naphthoflavone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-Naphthoflavone results in decreased expression of SLC43A2 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in decreased methylation of SLC43A2 gene [33]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased expression of SLC43A2 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  bisphenol F

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol F results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol S results in increased expression of SLC43A2 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

butyraldehyde results in increased expression of SLC43A2 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased expression of SLC43A2 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  cupric chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

cupric chloride results in decreased expression of SLC43A2 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Dexamethasone

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol F results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC43A2 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  ICG 001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG 001 results in increased expression of SLC43A2 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Indomethacin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol F results in increased expression of SLC43A2 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  Manganese

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  manganese chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  mono-(2-ethylhexyl)phthalate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diethylhexyl Phthalate results in increased abundance of mono-(2-ethylhexyl)phthalate which results in increased methylation of SLC43A2 gene [38]

Regulation Mechanism

Transcription Factor Info

  N-Nitrosopyrrolidine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

N-Nitrosopyrrolidine results in increased expression of SLC43A2 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in increased expression of SLC43A2 mRNA [41]

Regulation Mechanism

Transcription Factor Info

  Oxygen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Oxygen deficiency results in decreased expression of SLC43A2 mRNA [42]

Regulation Mechanism

Transcription Factor Info

  Ozone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Air Pollutants results in increased abundance of Ozone which affects the expression of SLC43A2 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC43A2 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine affects the susceptibility to Lipopolysaccharides which results in increased expression of SLC43A2 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

S-(1,2-dichlorovinyl)cysteine co-treated with Lipopolysaccharides results in increased expression of SLC43A2 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

S-(1,2-dichlorovinyl)cysteine results in increased expression of SLC43A2 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin co-treated with 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazophenyl)amide results in decreased expression of SLC43A2 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Tetrachlorodibenzodioxin results in decreased expression of SLC43A2 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Tetrachlorodibenzodioxin results in increased expression of SLC43A2 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC43A2 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  tris(2-butoxyethyl) phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(2-butoxyethyl) phosphate affects the expression of SLC43A2 mRNA [45]

Regulation Mechanism

Transcription Factor Info

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid results in increased methylation of SLC43A2 gene [46]

Regulation Mechanism

Transcription Factor Info

  Vanadates

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vanadates results in decreased expression of SLC43A2 mRNA [47]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC43A2 [1]

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol inhibits the expression of SLC43A2 [2]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC43A2 [3]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin increases the expression of SLC43A2 [4]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane increases the expression of SLC43A2 [5]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Leflunomide increases the expression of SLC43A2 [6]

  Acetaminophen

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC43A2 [7]

  DT Modulation2

Acetaminophen results in increased expression of SLC43A2 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC43A2 [8]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib inhibits the expression of SLC43A2 [9]

  Tretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin increases the expression of SLC43A2 [10]

Drug in Phase 2 Trial

  Ethanol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ethanol increases the expression of SLC43A2 [19]

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC43A2 [20]

Investigative Drug

  Beta-naphthoflavone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Beta-naphthoflavone inhibits the expression of SLC43A2 [25]

Patented Pharmaceutical Agent

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG-001 increases the expression of SLC43A2 [16]

  GSK-J4

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

GSK-J4 increases the expression of SLC43A2 [21]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC43A2 [26]

  Caffeine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Caffeine results in decreased phosphorylation of SLC43A2 protein [36]

Regulation Mechanism

Transcription Factor Info

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang increases the expression of SLC43A2 [18]

Environmental toxicant

  2,3-dibromopropyl-2,4,6-tribromophenyl ether

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2,3-dibromopropyl-2,4,6-tribromophenyl ether increases the expression of SLC43A2 [13]

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin inhibits the expression of SLC43A2 [22]

Mycotoxins

  Aflatoxin B1

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 increases the expression of SLC43A2 [11]

  DT Modulation2

Aflatoxin B1 results in decreased methylation of SLC43A2 intron [29]

Regulation Mechanism

Transcription Factor Info

  aflatoxin B2

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aflatoxin B2 results in increased methylation of SLC43A2 intron [29]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Acrylamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrylamide increases the expression of SLC43A2 [24]

Carcinogen

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene increases the expression of SLC43A2 [17]

  Arsenic

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC43A2 mRNA [31]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde increases the expression of SLC43A2 [14]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC43A2 [15]

  Diethylhexyl Phthalate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diethylhexyl Phthalate increases the expression of SLC43A2 [23]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine inhibits the expression of SLC43A2 [12]
References
1 Extremely low copper concentrations affect gene expression profiles of human prostate epithelial cell lines. Chem Biol Interact. 2010 Oct 6;188(1):214-9.
2 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
6 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
10 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423.
11 Aflatoxins upregulate CYP3A4 mRNA expression in a process that involves the PXR transcription factor. Toxicol Lett. 2011 Aug 28;205(2):146-53.
12 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
13 Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Environ Int. 2015 Jan;74:60-70.
14 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
15 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
16 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
17 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
18 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
19 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
20 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
21 Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018 Feb 16;293(7):2422-2437.
22 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
23 Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPAR Gamma/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol. 2019 Sep;131:110552.
24 Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol. 2020 Oct;144:111643.
25 Aryl hydrocarbon receptor (AhR) agonist beta-naphthoflavone regulated gene networks in human primary trophoblasts. Reprod Toxicol. 2020 Sep;96:370-379.
26 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
27 Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS One. 2017;12(6):e0179583.
28 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
29 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
30 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
31 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
32 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
33 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
34 Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
35 Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Sci Rep. 2015;5:15293.
36 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022;449:116110.
37 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
38 Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children's Health. Sci Total Environ. 2021;783:147035.
39 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
40 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
41 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
42 Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization. J Am Coll Cardiol. 2015;66(18):2005-2015.
43 Ozone exposure and blood transcriptome: A randomized, controlled, crossover trial among healthy adults. Environ Int. 2022;163:107242.
44 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.
45 Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro. 2018;46:178-188.
46 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
47 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.