General Information of Drug Transporter (DT)
DT ID DTD0308 Transporter Info
Gene Name SLC35F3
Transporter Name Putative thiamine transporter SLC35F3
Gene ID
148641
UniProt ID
Q8IY50
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Valproic Acid results in increased expression of SLC35F3 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in increased methylation of SLC35F3 gene [25]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Cisplatin co-treated with jinfukang results in decreased expression of SLC35F3 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC35F3 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC35F3 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC35F3 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  belinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

belinostat results in decreased expression of SLC35F3 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC35F3 intron [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene affects the methylation of SLC35F3 promoter [12]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in increased methylation of SLC35F3 exon [12]

Regulation Mechanism

Transcription Factor Info

  benzo(e)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

benzo(e)pyrene results in increased methylation of SLC35F3 intron [11]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC35F3 gene [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased methylation of SLC35F3 gene [13]

Regulation Mechanism

Transcription Factor Info

  chromium hexavalent ion

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

zinc chromate results in increased abundance of chromium hexavalent ion which results in increased expression of SLC35F3 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC35F3 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol co-treated with TGFB1 protein results in increased expression of SLC35F3 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  fluorene-9-bisphenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

fluorene-9-bisphenol results in increased expression of SLC35F3 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Fulvestrant

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC35F3 gene [13]

Regulation Mechanism

Transcription Factor Info

  Methapyrilene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methapyrilene results in increased methylation of SLC35F3 intron [11]

Regulation Mechanism

Transcription Factor Info

  Methyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyl Methanesulfonate results in decreased expression of SLC35F3 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  perfluorohexanesulfonic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluorohexanesulfonic acid results in decreased expression of SLC35F3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  perfluorooctanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluorooctanoic acid results in decreased expression of SLC35F3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  pirinixic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pirinixic acid binds to and results in increased activity of PPARA protein which results in decreased expression of SLC35F3 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC35F3 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine affects the susceptibility to Lipopolysaccharides which results in increased expression of SLC35F3 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

S-(1,2-dichlorovinyl)cysteine co-treated with Lipopolysaccharides results in decreased expression of SLC35F3 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC35F3 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased expression of SLC35F3 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  theaflavin-3,3'-digallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

theaflavin-3,3'-digallate affects the expression of SLC35F3 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  zinc chromate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

zinc chromate results in increased abundance of chromium hexavalent ion which results in increased expression of SLC35F3 mRNA [14]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in increased methylation of SLC35F3 intron [11]

Regulation Mechanism

Transcription Factor Info

  aflatoxin B2

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aflatoxin B2 results in increased methylation of SLC35F3 intron [11]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in decreased expression of SLC35F3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC35F3 [1]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC35F3 [2]

  Tretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin inhibits the expression of SLC35F3 [3]

  Belinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Belinostat inhibits the expression of SLC35F3 [4]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC35F3 [5]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC35F3 [6]

Investigative Drug

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate inhibits the expression of SLC35F3 [8]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC35F3 [9]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of SLC35F3 mRNA [20]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde inhibits the expression of SLC35F3 [7]

Carcinogen

  Ethyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ethyl Methanesulfonate inhibits the expression of SLC35F3 [7]
References
1 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.
7 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
10 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
11 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
14 Transcriptomic analysis reveals particulate hexavalent chromium regulates key inflammatory pathways in human lung fibroblasts as a possible mechanism of carcinogenesis. Toxicol Appl Pharmacol. 2024;485:116889.
15 Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res. 2018 Aug 30;19(1):160.
16 Integrated analysis reveals the immunotoxicity mechanism of BPs on human lymphocytes. Chem Biol Interact. 2024;399:111148.
17 Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood. J Immunotoxicol. 2016;13(2):173-80.
18 Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS One. 2009;4(8):e6796.
19 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
20 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
21 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.
22 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
23 Theaflavin 3, 3'-Digallate Delays Ovarian Aging by Improving Oocyte Quality and Regulating Granulosa Cell Function. Oxid Med Cell Longev. 2021;2021:7064179.
24 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
25 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.