General Information of Drug Transporter (DT)
DT ID DTD0188 Transporter Info
Gene Name SLC25A27
Transporter Name Mitochondrial uncoupling protein 4
Gene ID
9481
UniProt ID
O95847
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cyclosporine results in increased expression of SLC25A27 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC25A27 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Valproic Acid results in increased expression of SLC25A27 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Estradiol affects the expression of SLC25A27 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-4-phenylpyridinium

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-Methyl-4-phenylpyridinium results in increased expression of SLC25A27 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

SLC25A27 protein affects the susceptibility to 1-Methyl-4-phenylpyridinium [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

UCP2 protein affects the reaction 1-Methyl-4-phenylpyridinium results in increased expression of SLC25A27 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC25A27 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in decreased expression of SLC25A27 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in increased expression of SLC25A27 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in decreased expression of SLC25A27 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  Lactic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lactic Acid results in increased expression of SLC25A27 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC25A27 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  Phenylmercuric Acetate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC25A27 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC25A27 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC25A27 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

trichostatin A results in increased expression of SLC25A27 mRNA [10]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Nickel

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Nickel results in decreased expression of SLC25A27 mRNA [26]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Calcitriol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Calcitriol increases the expression of SLC25A27 [1]

  Cyclosporine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC25A27 [2]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen increases the expression of SLC25A27 [3]

  Valproic Acid

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC25A27 [4]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane increases the expression of SLC25A27 [5]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib increases the expression of SLC25A27 [6]

  Estradiol

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol inhibits the expression of SLC25A27 [7]

  Fluorouracil

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Fluorouracil inhibits the expression of SLC25A27 [8]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC25A27 [15]

Drug in Phase 1 Trial

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC25A27 [10]

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC25A27 [17]

Investigative Drug

  4-hydroxy-2-nonenal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

4-hydroxy-2-nonenal inhibits the expression of SLC25A27 [9]

Regulation Mechanism

via the inhibition of Nuclear factor NF-kappa-B p105 subunit (NFKB1) Transcription Factor Info

Cell System

Human neuroblastoma cells (SH-SY5Y)

  Milchsaure

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Milchsaure increases the expression of SLC25A27 [13]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC25A27 [16]

Acute Toxic Substance

  Cycloheximide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cycloheximide increases the expression of SLC25A27 [9]

Regulation Mechanism

via enhancement of Nuclear factor NF-kappa-B p105 subunit (NFKB1) Transcription Factor Info

Cell System

Human neuroblastoma cells (SH-SY5Y)

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of SLC25A27 [9]

Regulation Mechanism

via enhancement of Nuclear factor NF-kappa-B p105 subunit (NFKB1) Transcription Factor Info

Cell System

Human neuroblastoma cells (SH-SY5Y)

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC25A27 [11]

  Lead

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lead affects the expression of SLC25A27 [12]

  Diethylhexyl Phthalate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diethylhexyl Phthalate inhibits the expression of SLC25A27 [14]
References
1 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
5 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
6 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
7 17 beta-Estradiol Activates HSF1 via MAPK Signaling in ER alpha-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533.
8 New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol. 2021 Aug;95(8):2691-2718.
9 Transcriptional regulation of UCP4 by NF-kappaB and its role in mediating protection against MPP+ toxicity. Free Radic Biol Med. 2010 Jul 15;49(2):192-204.
10 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
11 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
12 RNA-Seq of Human Neural Progenitor Cells Exposed to Lead (Pb) Reveals Transcriptome Dynamics, Splicing Alterations and Disease Risk Associations. Toxicol Sci. 2017 Sep 1;159(1):251-265.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPAR Gamma/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol. 2019 Sep;131:110552.
15 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814.
16 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
17 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
18 Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. J Neurosci Res. 2005 Jul 15;81(2):261-8.
19 Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells. Neurotox Res. 2010;17(4):332-43.
20 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
21 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
22 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
23 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
24 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
25 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711.
26 Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362-72.
27 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
28 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.