General Information of Drug Transporter (DT)
DT ID DTD0175 Transporter Info
Gene Name SLC25A16
Transporter Name Graves disease carrier protein
Gene ID
8034
UniProt ID
P16260
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Valproic Acid affects the expression of SLC25A16 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Selenium co-treated with Vitamin E results in decreased expression of SLC25A16 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide affects the expression of SLC25A16 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC25A16 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in decreased expression of SLC25A16 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol S results in decreased methylation of SLC25A16 gene [24]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC25A16 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  K 7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K 7174 results in increased expression of SLC25A16 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Lactic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lactic Acid affects the expression of SLC25A16 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Methyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyl Methanesulfonate results in increased expression of SLC25A16 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

PON1 gene polymorphism affects the susceptibility to O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphate affects the expression of SLC25A16 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  Selenium

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Selenium co-treated with Vitamin E results in decreased expression of SLC25A16 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Selenium results in decreased expression of SLC25A16 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased expression of SLC25A16 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  tert-Butylhydroperoxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tert-Butylhydroperoxide results in increased expression of SLC25A16 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

testosterone enanthate affects the expression of SLC25A16 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  urushiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

urushiol results in decreased expression of SLC25A16 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  Vorinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC25A16 mRNA [20]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone enanthate affects the expression of SLC25A16 [1]

  Progesterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Progesterone increases the expression of SLC25A16 [2]

  Hydrogen Peroxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydrogen Peroxide increases the expression of SLC25A16 [3]

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate increases the expression of SLC25A16 [4]

  Isotretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Isotretinoin inhibits the expression of SLC25A16 [5]

  Acetaminophen

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC25A16 [6]

  DT Modulation2

Acetaminophen results in increased expression of SLC25A16 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine increases the expression of SLC25A16 [7]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine increases the expression of SLC25A16 [8]

  Panobinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Panobinostat increases the expression of SLC25A16 [9]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib increases the expression of SLC25A16 [10]

  Testosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone inhibits the expression of SLC25A16 [11]

  Valproic Acid

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC25A16 [12]

Drug in Phase 3 Trial

  Vitamin E

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vitamin E inhibits the expression of SLC25A16 [13]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A inhibits the expression of SLC25A16 [19]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin inhibits the expression of SLC25A16 [14]

Investigative Drug

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate increases the expression of SLC25A16 [9]

  Milchsaure

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Milchsaure affects the expression of SLC25A16 [17]

Patented Pharmaceutical Agent

  K-7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K-7174 increases the expression of SLC25A16 [16]

Natural Product

  Selenium nanoparticles

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Selenium nanoparticles inhibits the expression of SLC25A16 [13]

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde increases the expression of SLC25A16 [15]

Carcinogen

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC25A16 [18]
References
1 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802.
2 Progestins regulate genes that can elicit both proliferative and antiproliferative effects in breast cancer cells. Oncol Rep. 2008 Jun;19(6):1627-34.
3 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
8 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
11 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384.
12 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
13 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
16 A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013 Sep 27;8(9):e75568.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
18 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
19 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264.
20 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
21 Temporal gene expression changes induced by a low concentration of benzo[a]pyrene diol epoxide in a normal human cell line. Mutat Res. 2010;684(1-2):74-80.
22 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
23 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
24 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
25 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
26 Repeated developmental exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1)-modulated effects on cerebellar gene expression. Toxicol Sci. 2011;123(1):155-69.
27 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
28 Comparison of characteristics of peroxide-conditioned immortal human lens-epithelial cell lines with their murine counterparts. Exp Eye Res. 2004;79(3):411-7.
29 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020;386:114828.
30 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.