General Information of Drug Transporter (DT)
DT ID DTD0136 Transporter Info
Gene Name SLC20A1
Transporter Name Sodium-dependent phosphate transporter 1
Gene ID
6574
UniProt ID
Q8WUM9
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

SLC20A1 protein affects the susceptibility to Cisplatin [55]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Valproic Acid results in decreased methylation of SLC20A1 gene [75]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in increased expression of SLC20A1 mRNA [76]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Estradiol affects the expression of SLC20A1 mRNA [60]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Tretinoin co-treated with Arsenic Trioxide results in decreased expression of SLC20A1 mRNA [51]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in increased expression of SLC20A1 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  1-Butanol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Gasoline co-treated with 1-Butanol results in increased abundance of Particulate Matter co-treated with Polycyclic Aromatic Hydrocarbons which results in increased expression of SLC20A1 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-3-isobutylxanthine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in decreased expression of SLC20A1 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  2-palmitoylglycerol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2-palmitoylglycerol results in increased expression of SLC20A1 mRNA [45]

Regulation Mechanism

Transcription Factor Info

  4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid results in decreased expression of SLC20A1 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide affects the expression of SLC20A1 mRNA [46]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide results in decreased expression of SLC20A1 mRNA [47]

Regulation Mechanism

Transcription Factor Info

  Acrolein

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  alpha-pinene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  Arsenic Trioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin co-treated with Arsenic Trioxide results in decreased expression of SLC20A1 mRNA [51]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in increased expression of SLC20A1 mRNA [52]

Regulation Mechanism

Transcription Factor Info

  beta-Naphthoflavone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-Naphthoflavone results in increased expression of SLC20A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A affects the expression of SLC20A1 mRNA [38]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in decreased expression of SLC20A1 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC20A1 gene [54]

Regulation Mechanism

Transcription Factor Info

  chloropicrin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

chloropicrin affects the expression of SLC20A1 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  cobaltous chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

cobaltous chloride results in increased expression of SLC20A1 mRNA [56]

Regulation Mechanism

Transcription Factor Info

  coumarin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

coumarin results in decreased phosphorylation of SLC20A1 protein [53]

Regulation Mechanism

Transcription Factor Info

  cupric chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

cupric chloride results in increased expression of SLC20A1 mRNA [57]

Regulation Mechanism

Transcription Factor Info

  Dexamethasone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in decreased expression of SLC20A1 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC20A1 mRNA [58]

Regulation Mechanism

Transcription Factor Info

  erucylphospho-N,N,N-trimethylpropylammonium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

erucylphospho-N,N,N-trimethylpropylammonium results in increased expression of SLC20A1 mRNA [59]

Regulation Mechanism

Transcription Factor Info

  Foscarnet

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Foscarnet inhibits the reaction Phosphates results in increased expression of SLC20A1 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Foscarnet results in decreased activity of SLC20A1 protein [61]

Regulation Mechanism

Transcription Factor Info

  FR900359

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

FR900359 results in decreased phosphorylation of SLC20A1 protein [62]

Regulation Mechanism

Transcription Factor Info

  Gasoline

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Gasoline co-treated with 1-Butanol results in increased abundance of Particulate Matter co-treated with Polycyclic Aromatic Hydrocarbons which results in increased expression of SLC20A1 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Gasoline results in increased abundance of Particulate Matter co-treated with Polycyclic Aromatic Hydrocarbons which results in increased expression of SLC20A1 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  ICG 001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG 001 affects the expression of SLC20A1 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  indolo(3,2-b)carbazole

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

indolo(3,2-b)carbazole results in increased expression of SLC20A1 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  Indomethacin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in decreased expression of SLC20A1 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  K 7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K 7174 results in increased expression of SLC20A1 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  Lactic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lactic Acid results in increased expression of SLC20A1 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Lithium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lithium promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [63]

Regulation Mechanism

Transcription Factor Info

  Manganese

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  manganese chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  methacrylaldehyde

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  methylmercuric chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methylmercuric chloride results in increased expression of SLC20A1 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Methyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyl Methanesulfonate results in increased expression of SLC20A1 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  methylparaben

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methylparaben results in increased expression of SLC20A1 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in increased expression of SLC20A1 mRNA [65]

Regulation Mechanism

Transcription Factor Info

  Ozone

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Air Pollutants results in increased abundance of Ozone which affects the expression of SLC20A1 mRNA [66]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

Volatile Organic Compounds co-treated with Ozone results in increased oxidation of SLC20A1 mRNA [48]

Regulation Mechanism

Transcription Factor Info

  PCI 5002

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

PCI 5002 co-treated with Zinc results in increased expression of SLC20A1 mRNA [67]

Regulation Mechanism

Transcription Factor Info

  Phosphates

         10 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenates inhibits the reaction SLC20A1 protein results in increased uptake of Phosphates [63]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

CXCL8 protein promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [61]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

CXCR1 protein promotes the reaction CXCL8 protein promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [61]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

Foscarnet inhibits the reaction Phosphates results in increased expression of SLC20A1 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation5

Lithium promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [63]

Regulation Mechanism

Transcription Factor Info

  DT Modulation6

Phosphates results in increased expression of SLC20A1 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation7

SLC20A1 protein affects the reaction Phosphates results in decreased expression of AKT1 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation8

SLC20A1 protein affects the susceptibility to Phosphates [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation9

SLC20A1 protein results in increased uptake of Phosphates [61]

Regulation Mechanism

Transcription Factor Info

  DT Modulation10

Sodium promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [63]

Regulation Mechanism

Transcription Factor Info

  pirinixic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pirinixic acid binds to and results in increased activity of PPARA protein which results in increased expression of SLC20A1 mRNA [68]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine co-treated with Lipopolysaccharides results in decreased expression of SLC20A1 mRNA [70]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide analog results in increased expression of SLC20A1 mRNA [71]

Regulation Mechanism

Transcription Factor Info

  Sodium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium promotes the reaction SLC20A1 protein results in increased uptake of Phosphates [63]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC20A1 mRNA [57]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  Sodium Dodecyl Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium Dodecyl Sulfate results in increased expression of SLC20A1 mRNA [72]

Regulation Mechanism

Transcription Factor Info

  sulforaphane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sulforaphane results in increased expression of SLC20A1 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin results in increased expression of SLC20A1 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  theaflavin-3,3'-digallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

theaflavin-3,3'-digallate affects the expression of SLC20A1 mRNA [73]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC20A1 mRNA [57]

Regulation Mechanism

Transcription Factor Info

  tris(2-butoxyethyl) phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(2-butoxyethyl) phosphate affects the expression of SLC20A1 mRNA [74]

Regulation Mechanism

Transcription Factor Info

  Vitamin K 3

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vitamin K 3 affects the expression of SLC20A1 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  Zinc

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

PCI 5002 co-treated with Zinc results in increased expression of SLC20A1 mRNA [67]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Phenobarbital

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenobarbital affects the expression of SLC20A1 [2]

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate increases the expression of SLC20A1 [3]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC20A1 [4]

  Hydrogen Peroxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydrogen Peroxide affects the expression of SLC20A1 [5]

  Menadione

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Menadione affects the expression of SLC20A1 [5]

  Dasatinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dasatinib inhibits the expression of SLC20A1 [6]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen increases the expression of SLC20A1 [7]

  Azathioprine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Azathioprine increases the expression of SLC20A1 [8]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC20A1 [9]

  Vincristine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vincristine inhibits the expression of SLC20A1 [10]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine inhibits the expression of SLC20A1 [11]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane inhibits the expression of SLC20A1 [12]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Leflunomide increases the expression of SLC20A1 [13]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC20A1 [14]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib increases the expression of SLC20A1 [15]

  Estradiol

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol increases the expression of SLC20A1 [16]

  Temozolomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Temozolomide inhibits the expression of SLC20A1 [17]

  Tretinoin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin inhibits the expression of SLC20A1 [18]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine increases the expression of SLC20A1 [19]

Drug Marketed but not Approved by US FDA

  Catechin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Catechin increases the expression of SLC20A1 [1]

Drug in Phase 3 Trial

  Sulforafan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sulforafan increases the expression of SLC20A1 [40]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A affects the expression of SLC20A1 [38]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin increases the expression of SLC20A1 [26]

Drug in Preclinical Test

  (+)-JQ1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-JQ1 inhibits the expression of SLC20A1 [30]

Investigative Drug

  Beta-naphthoflavone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Beta-naphthoflavone increases the expression of SLC20A1 [23]

  Phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phosphate increases the expression of SLC20A1 [28]

  Milchsaure

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Milchsaure increases the expression of SLC20A1 [37]

Patented Pharmaceutical Agent

  K-7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K-7174 increases the expression of SLC20A1 [29]

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG-001 affects the expression of SLC20A1 [33]

Natural Product

  Flavonoids

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Flavonoids increases the expression of SLC20A1 [1]

  Polyphenols

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polyphenols increases the expression of SLC20A1 [1]

  Indolo(3,2-b)carbazole

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Indolo(3,2-b)carbazole increases the expression of SLC20A1 [21]

  Thapsigargin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thapsigargin increases the expression of SLC20A1 [36]

  Methylparaben

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methylparaben increases the expression of SLC20A1 [39]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC20A1 [42]

  Caffeine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Caffeine results in decreased phosphorylation of SLC20A1 protein [53]

Regulation Mechanism

Transcription Factor Info

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lipopolysaccharides co-treated with Resveratrol results in decreased expression of SLC20A1 mRNA [69]

Regulation Mechanism

Transcription Factor Info

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang increases the expression of SLC20A1 [35]

Plant Extract

  Plant Extracts

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts increases the expression of SLC20A1 [21]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin increases the expression of SLC20A1 [41]

Mycotoxins

  Aflatoxin B1

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 increases the expression of SLC20A1 [27]

  DT Modulation2

Aflatoxin B1 results in decreased methylation of SLC20A1 gene [49]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Sarin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sarin inhibits the expression of SLC20A1 [22]

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde inhibits the expression of SLC20A1 [25]

  Chloropicrin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Chloropicrin affects the expression of SLC20A1 [34]

Carcinogen

  Benzo(a)pyrene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC20A1 [24]

  Arsenic

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC20A1 mRNA [50]

Regulation Mechanism

Transcription Factor Info

  Nickel

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Nickel results in increased expression of SLC20A1 mRNA [64]

Regulation Mechanism

Transcription Factor Info

Cyanotoxin

  Cylindrospermopsin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cylindrospermopsin increases the expression of SLC20A1 [31]

  cylindrospermopsin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

cylindrospermopsin results in increased expression of SLC20A1 mRNA [31]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  Lithium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lithium Chloride increases the expression of SLC20A1 [20]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC20A1 [32]
References
1 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.
2 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
5 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203.
6 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
11 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
16 17 beta-Estradiol Activates HSF1 via MAPK Signaling in ER alpha-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533.
17 Temozolomide induces activation of Wnt/beta-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278.
18 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423.
19 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
20 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90.
21 Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits. Toxicol In Vitro. 2008 Mar;22(2):396-410.
22 ETS2 regulating neurodegenerative signaling pathway of human neuronal (SH-SY5Y) cells exposed to single and repeated low-dose sarin (GB). Chem Res Toxicol. 2009 Jun;22(6):990-6.
23 Identification of AhR-regulated genes involved in PAH-induced immunotoxicity using a highly-sensitive DNA chip, 3D-Gene Human Immunity and Metabolic Syndrome 9k. Toxicol In Vitro. 2010 Feb;24(1):85-91.
24 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
25 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
26 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
27 Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):176-87.
28 High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1. PLoS One. 2013;8(1):e53393.
29 A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013 Sep 27;8(9):e75568.
30 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
31 Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells. PLoS One. 2014 Jun 12;9(6):e99121.
32 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
33 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
34 Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
35 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
36 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
37 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
38 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134.
39 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140.
40 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047.
41 Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genomics. 2011 Apr 15;12:193.
42 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
43 Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol In Vitro. 2018;48:329-341.
44 Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS One. 2017;12(6):e0179583.
45 Direct effect of 2-palmitoyl glycerol on promotion of gamma aminobutyric acid synthesis in normal human fetal-derived astrocytes. FEBS Open Bio. 2023;13(7):1320-1332.
46 Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway. Carcinogenesis. 2010;31(6):1149-57.
47 Early whole-genome transcriptional response induced by benzo[a]pyrene diol epoxide in a normal human cell line. Genomics. 2009;93(4):332-42.
48 Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol. 2020;3(1):392.
49 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
50 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
51 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005;102(21):7653-8.
52 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
53 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022;449:116110.
54 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
55 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006;118(7):1699-712.
56 Alterations of histone modifications by cobalt compounds. Carcinogenesis. 2009;30(7):1243-51.
57 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
58 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
59 Upregulation of cell cycle genes in head and neck cancer patients may be antagonized by erufosine's down regulation of cell cycle processes in OSCC cells. Oncotarget. 2018;9(5):5797-5810.
60 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711.
61 Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis Rheum. 2005;52(1):144-54.
62 Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics. 2023;22(11):100649.
63 Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol. 2007;293(2):C606-20.
64 Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362-72.
65 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
66 Ozone exposure and blood transcriptome: A randomized, controlled, crossover trial among healthy adults. Environ Int. 2022;163:107242.
67 Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008 Jul 1;68(13):5318-25.
68 Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS One. 2009;4(8):e6796.
69 Trans-resveratrol induces a potential anti-lipogenic effect in lipopolysaccharide-stimulated enterocytes. Cell Mol Biol (Noisy-le-grand). 2015;61(8):9-16.
70 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.
71 High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics. 2015;16(1):315.
72 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020;386:114828.
73 Theaflavin 3, 3'-Digallate Delays Ovarian Aging by Improving Oocyte Quality and Regulating Granulosa Cell Function. Oxid Med Cell Longev. 2021;2021:7064179.
74 Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro. 2018;46:178-188.
75 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
76 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.