General Information of Drug Transporter (DT)
DT ID DTD0478 Transporter Info
Gene Name SLC8A2
Transporter Name Sodium/calcium exchanger 2
Gene ID
6543
UniProt ID
Q9UPR5
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Approved Drug

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC8A2 [1]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC8A2 [2]

  Decitabine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Decitabine affects the expression of SLC8A2 [3]

  Cisplatin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC8A2 [4]

Drug in Phase 3 Trial

  Triclosan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Triclosan increases the expression of SLC8A2 [9]

Drug in Phase 2 Trial

  MS-275

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

MS-275 increases the expression of SLC8A2 [8]

Investigative Drug

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate inhibits the expression of SLC8A2 [7]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC8A2 [10]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang inhibits the expression of SLC8A2 [4]

Health and Environmental Toxicant

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde increases the expression of SLC8A2 [6]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine increases the expression of SLC8A2 [5]

Chemical Compound

  DT Modulation1

Valproic Acid affects the expression of SLC8A2 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in increased methylation of SLC8A2 gene [19]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Cisplatin affects the expression of SLC8A2 mRNA [3]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Cisplatin co-treated with jinfukang results in decreased expression of SLC8A2 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  Pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Pentanal increases the expression of SLC8A2 [6]

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC8A2 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC8A2 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC8A2 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  Aldehydes

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aldehydes results in increased expression of SLC8A2 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC8A2 promoter [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC8A2 5' UTR [13]

Regulation Mechanism

Transcription Factor Info

  butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

butyraldehyde results in increased expression of SLC8A2 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased expression of SLC8A2 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC8A2 gene [15]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC8A2 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  entinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

entinostat results in increased expression of SLC8A2 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in increased expression of SLC8A2 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pentanal results in increased expression of SLC8A2 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC8A2 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite affects the methylation of SLC8A2 gene [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased expression of SLC8A2 mRNA [14]

Regulation Mechanism

Transcription Factor Info
References
1 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
6 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Transcriptome and DNA Methylome Dynamics during Triclosan-Induced Cardiomyocyte Differentiation Toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
11 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
12 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
14 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
15 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
16 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
17 Microarray dataset of transient and permanent DNA methylation changes in HeLa cells undergoing inorganic arsenic-mediated epithelial-to-mesenchymal transition. Data Brief. 2017;13:6-9.
18 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
19 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.