General Information of Drug Transporter (DT)
DT ID DTD0463 Transporter Info
Gene Name SLC7A10
Transporter Name Asc-type amino acid transporter 1
Gene ID
56301
UniProt ID
Q9NS82
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in decreased methylation of SLC7A10 intron [16]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC7A10 [3]

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin affects the expression of SLC7A10 [4]

  Decitabine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Decitabine affects the expression of SLC7A10 [4]

  Zidovudine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine inhibits the expression of SLC7A10 [5]

  Panobinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Panobinostat increases the expression of SLC7A10 [6]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC7A10 [7]

Drug in Phase 3 Trial

  Triclosan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Triclosan increases the expression of SLC7A10 [12]

Drug in Phase 2 Trial

  MS-275

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

MS-275 increases the expression of SLC7A10 [14]

Drug in Phase 1 Trial

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC7A10 [9]

Investigative Drug

  (+)-amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetic acid (ACPP)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-Amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetic acid (ACPP) inhibits the activity of SLC7A10 (IC50 = 0.72 +/- 0.13 microM) [1]

Cell System

Chinese hamster ovary (CHO) cells-ASC1

  DT Modulation2

(+)-Amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetic acid (ACPP) inhibits the activity of SLC7A10 (IC50 = 0.8 +/- 0.30 microM) [1]

Cell System

Rat primary neurons-ASC1

  BMS-466442

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

BMS-466442 inhibits the activity of SLC7A10 [15]

Natural Product

  D-isoleucine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

D-isoleucine inhibits the activity of SLC7A10 [2]

Cell System

Double transgenic mouse line

Pesticide/Insecticide

  Dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dicrotophos increases the expression of SLC7A10 [11]

Health and Environmental Toxicant

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde increases the expression of SLC7A10 [10]

  Diethylhexyl Phthalate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diethylhexyl Phthalate inhibits the expression of SLC7A10 [13]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine increases the expression of SLC7A10 [8]

Chemical Compound

  DT Modulation1

Zidovudine results in increased expression of SLC7A10 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC7A10 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  Pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Pentanal increases the expression of SLC7A10 [10]

  DT Modulation1

Diethylhexyl Phthalate results in increased expression of SLC7A10 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Aldehydes

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aldehydes results in increased expression of SLC7A10 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC7A10 promoter [18]

Regulation Mechanism

Transcription Factor Info

  butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

butyraldehyde results in increased expression of SLC7A10 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

dicrotophos results in increased expression of SLC7A10 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  entinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

entinostat results in increased expression of SLC7A10 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC7A10 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pentanal results in increased expression of SLC7A10 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC7A10 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

trichostatin A results in increased expression of SLC7A10 mRNA [9]

Regulation Mechanism

Transcription Factor Info
References
1 A novel Na(+) -Independent alanine-serine-cysteine transporter 1 inhibitor inhibits both influx and efflux of D-Serine. J Neurosci Res. 2016 Oct;94(10):888-95.
2 A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) for glycine inhibitory transmission and respiratory pattern. Sci Rep. 2018 Jun 4;8(1):8536.
3 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
4 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003.
5 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
6 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
9 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
10 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
11 Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol. 2017 May;103:253-260.
12 Transcriptome and DNA Methylome Dynamics during Triclosan-Induced Cardiomyocyte Differentiation Toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
13 Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPAR Gamma/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol. 2019 Sep;131:110552.
14 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
15 Inhibition of the Alanine-Serine-Cysteine-1 Transporter by BMS-466442. ACS Chem Neurosci. 2019 May 15;10(5):2510-2517.
16 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
17 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
19 Long-term di (2-ethylhexyl)-phthalate exposure promotes proliferation and survival of HepG2 cells via activation of NFB. Toxicol In Vitro. 2017;42:86-92.
20 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.