General Information of Drug Transporter (DT)
DT ID DTD0423 Transporter Info
Gene Name SLC5A3
Transporter Name Sodium/myo-inositol cotransporter
Gene ID
6526
UniProt ID
P53794
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cisplatin co-treated with jinfukang results in increased expression of SLC5A3 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Valproic Acid affects the expression of SLC5A3 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in decreased methylation of SLC5A3 gene [42]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide results in decreased expression of SLC5A3 mRNA [32]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC5A3 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in decreased expression of SLC5A3 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

avobenzone results in increased expression of SLC5A3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in decreased expression of SLC5A3 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased expression of SLC5A3 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC5A3 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  Chenodeoxycholic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Deoxycholic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Dichlorodiphenyl Dichloroethylene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dichlorodiphenyl Dichloroethylene results in decreased expression of SLC5A3 mRNA [38]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC5A3 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  Glycochenodeoxycholic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Glycocholic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Glycodeoxycholic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  hydroquinone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

hydroquinone results in decreased expression of SLC5A3 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in increased expression of SLC5A3 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  potassium chromate(VI)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC5A3 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

potassium chromate(VI) results in decreased expression of SLC5A3 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  Tartrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tartrazine co-treated with Glycochenodeoxycholic Acid co-treated with Deoxycholic Acid co-treated with Chenodeoxycholic Acid co-treated with Glycodeoxycholic Acid co-treated with Glycocholic Acid results in increased expression of SLC5A3 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

trichostatin A results in increased expression of SLC5A3 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC5A3 mRNA [41]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Calcitriol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Calcitriol increases the expression of SLC5A3 [2]

  Hydrogen Peroxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydrogen Peroxide increases the expression of SLC5A3 [3]

  Amiodarone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Amiodarone increases the expression of SLC5A3 [4]

  Medroxyprogesterone Acetate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Medroxyprogesterone Acetate inhibits the expression of SLC5A3 [5]

  Progesterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Progesterone inhibits the expression of SLC5A3 [6]

  Piroxicam

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Piroxicam increases the expression of SLC5A3 [7]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine inhibits the expression of SLC5A3 [8]

  Zoledronic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zoledronic Acid inhibits the expression of SLC5A3 [9]

  Dexamethasone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dexamethasone inhibits the expression of SLC5A3 [10]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC5A3 [11]

  Carbamazepine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Carbamazepine affects the expression of SLC5A3 [12]

  Vorinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vorinostat inhibits the expression of SLC5A3 [13]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin increases the expression of SLC5A3 [14]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane increases the expression of SLC5A3 [15]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC5A3 [16]

  Avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Avobenzone increases the expression of SLC5A3 [17]

  Hydroquinone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydroquinone inhibits the expression of SLC5A3 [18]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib increases the expression of SLC5A3 [19]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen increases the expression of SLC5A3 [20]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC5A3 [13]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A inhibits the expression of SLC5A3 [23]

  Ethanol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ethanol increases the expression of SLC5A3 [29]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin increases the expression of SLC5A3 [25]

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC5A3 [27]

Investigative Drug

  Coumestrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Coumestrol increases the expression of SLC5A3 [22]

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate increases the expression of SLC5A3 [27]

Natural Product

  Phlorizin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phlorizin inhibits the transportation of 3H-D-glucose by SLC5A3 (Ki = 64 microM) [1]

Affected Drug/Substrate

3H-D-glucose Modulation Type Inhibition

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC5A3 [31]

Mycotoxins

  Aflatoxin M1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin M1 inhibits the expression of SLC5A3 [28]

Acute Toxic Substance

  Cadmium

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium inhibits the expression of SLC5A3 [26]

  Thimerosal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thimerosal increases the expression of SLC5A3 [13]

  Acrylamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrylamide increases the expression of SLC5A3 [30]

Carcinogen

  Polychlorinated Biphenyls

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated Biphenyls affects the expression of SLC5A3 [24]

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC5A3 mRNA [36]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  Lithium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lithium Chloride increases the expression of SLC5A3 [21]
References
1 Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J Membr Biol. 1995 Jan;143(2):103-13.
2 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
3 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
4 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
5 Effects of medroxyprogesterone acetate on gene expression in myometrial explants from pregnant women. J Clin Endocrinol Metab. 2010 Dec;95(12):E437-47.
6 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
7 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
8 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
11 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. Arch Toxicol. 2019 Jul;93(7):1903-1915.
18 Keratinocyte-derived IL-36 Gamma plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
20 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
21 Early gene response in lithium chloride induced apoptosis. Apoptosis. 2005 Jan;10(1):75-90.
22 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
23 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
24 Exposure of human fetal penile cells to different PCB mixtures: transcriptome analysis points to diverse modes of interference on external genitalia programming. Reprod Toxicol. 2011 Jul;32(1):1-14.
25 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
26 Short and long term gene expression variation and networking in human proximal tubule cells when exposed to cadmium. BMC Med Genomics. 2013;6 Suppl 1(Suppl 1):S2.
27 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
28 Transcriptome analysis revealed that aflatoxin M1 could cause cell cycle arrest in differentiated Caco-2 cells. Toxicol In Vitro. 2019 Sep;59:35-43.
29 Cardiac Toxicity From Ethanol Exposure in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
30 Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol. 2020 Oct;144:111643.
31 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
32 Temporal gene expression changes induced by a low concentration of benzo[a]pyrene diol epoxide in a normal human cell line. Mutat Res. 2010;684(1-2):74-80.
33 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
34 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
35 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
36 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
37 Dataset on transcriptomic profiling of cholestatic liver injury induced by food additives and a cosmetic ingredient. Data Brief. 2021;38:107373.
38 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
39 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
40 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
41 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
42 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.