General Information of Drug Transporter (DT)
DT ID DTD0421 Transporter Info
Gene Name SLC5A12
Transporter Name Sodium-coupled monocarboxylate transporter 2
Gene ID
159963
UniProt ID
Q1EHB4
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC5A12 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC5A12 5' UTR [15]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC5A12 promoter [15]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  8-Bromo Cyclic Adenosine Monophosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

8-Bromo Cyclic Adenosine Monophosphate results in increased expression of SLC5A12 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in decreased expression of SLC5A12 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC5A12 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Vorinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC5A12 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methyleugenol results in decreased expression of SLC5A12 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  methylmercuric chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methylmercuric chloride results in decreased expression of SLC5A12 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC5A12 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide analog results in increased expression of SLC5A12 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

trichostatin A results in increased expression of SLC5A12 mRNA [23]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in decreased expression of SLC5A12 mRNA [20]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Arsenic Trioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenic Trioxide increases the expression of SLC5A12 [1]

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC5A12 [2]

  Hydrogen Peroxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydrogen Peroxide affects the expression of SLC5A12 [3]

  Cytarabine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cytarabine inhibits the expression of SLC5A12 [4]

  Folic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Folic Acid increases the expression of SLC5A12 [5]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC5A12 [6]

  Vorinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vorinostat increases the expression of SLC5A12 [7]

  Rifampin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rifampin increases the expression of SLC5A12 [8]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC5A12 [9]

Drug in Phase 1 Trial

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC5A12 [6]

Natural Product

  Methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyleugenol inhibits the expression of SLC5A12 [13]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of SLC5A12 mRNA [21]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Cadmium

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium inhibits the expression of SLC5A12 [10]

Carcinogen

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC5A12 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC5A12 [13]

Health and Environmental Toxicant

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC5A12 [11]

  Diethylhexyl Phthalate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diethylhexyl Phthalate inhibits the expression of SLC5A12 [12]
References
1 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
2 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
3 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203.
4 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
5 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92.
6 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
9 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
10 Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells. PLoS One. 2013 Dec 20;8(12):e84646.
11 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
12 Di-(2-ethylhexyl)-phthalate induces apoptosis via the PPAR Gamma/PTEN/AKT pathway in differentiated human embryonic stem cells. Food Chem Toxicol. 2019 Sep;131:110552.
13 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
14 Mechanistic profiling of the cAMP-dependent steroidogenic pathway in the H295R endocrine disrupter screening system: new endpoints for toxicity testing. Toxicol Lett. 2012;208(2):174-84.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
16 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
17 Differential effect of the duration of exposure on the carcinogenicity of cadmium in MCF10A mammary epithelial cells. Food Chem Toxicol. 2024;186:114523.
18 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
19 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
20 Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol. 2020 Sep;94(9):3137-3155.
21 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
22 High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics. 2015;16(1):315.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.