General Information of Drug Transporter (DT)
DT ID DTD0395 Transporter Info
Gene Name SLC52A3
Transporter Name Riboflavin transporter 2
Gene ID
113278
UniProt ID
Q9NQ40
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC52A3 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in decreased methylation of SLC52A3 exon [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in decreased methylation of SLC52A3 promoter [13]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC52A3 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in increased expression of SLC52A3 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol S results in increased methylation of SLC52A3 gene [14]

Regulation Mechanism

Transcription Factor Info

  Dichlorodiphenyl Dichloroethylene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dichlorodiphenyl Dichloroethylene results in decreased expression of SLC52A3 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Panobinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  entinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

entinostat results in increased expression of SLC52A3 mRNA [2]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with entinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC52A3 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  Lactic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lactic Acid results in decreased expression of SLC52A3 mRNA [6]

Regulation Mechanism

Transcription Factor Info

  monomethylarsonous acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

monomethylarsonous acid affects the acetylation of H3-4 protein which affects the methylation of SLC52A3 promoter [16]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC52A3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide analog results in decreased expression of SLC52A3 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite affects the acetylation of H3-4 protein which affects the methylation of SLC52A3 promoter [16]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in decreased methylation of SLC52A3 intron [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

sodium arsenite results in increased expression of SLC52A3 mRNA [20]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Methylene blue

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methylene blue inhibits the transportation of Riboflavin by SLC52A3 [1]

Affected Drug/Substrate

Riboflavin Modulation Type Inhibition

Cell System

Intestinal epithelial T84 cells-RFVT3

  Panobinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Panobinostat increases the expression of SLC52A3 [2]

  Testosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone inhibits the expression of SLC52A3 [3]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC52A3 [2]

Drug in Phase 2 Trial

  MS-275

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

MS-275 increases the expression of SLC52A3 [2]

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC52A3 [7]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite increases the expression of SLC52A3 [10]

Drug in Preclinical Test

  (+)-JQ1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-JQ1 inhibits the expression of SLC52A3 [5]

Investigative Drug

  Milchsaure

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Milchsaure inhibits the expression of SLC52A3 [6]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC52A3 [9]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of SLC52A3 mRNA [18]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene increases the expression of SLC52A3 [8]

Herbicide

  Atrazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Atrazine increases the expression of SLC52A3 [4]
References
1 Functional involvement of RFVT3/SLC52A3 in intestinal riboflavin absorption. Am J Physiol Gastrointest Liver Physiol. 2014 Jan;306(2):G102-10.
2 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
3 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384.
4 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
5 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
6 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
7 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814.
8 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
9 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
10 Epigenetic effects of low-level sodium arsenite exposure on human liver HepaRG cells. Arch Toxicol. 2020 Dec;94(12):3993-4005.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
14 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
15 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
16 Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis. 2008;29(8):1500-8.
17 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
18 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
19 High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics. 2015;16(1):315.
20 Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci. 2018 Apr 1;162(2):676-687.
21 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.