General Information of Drug Transporter (DT)
DT ID DTD0331 Transporter Info
Gene Name SLC38A4
Transporter Name Sodium-coupled neutral amino acid transporter 4
Gene ID
55089
UniProt ID
Q969I6
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Approved Drug

  Testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone enanthate affects the expression of SLC38A4 [1]

  Progesterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Progesterone inhibits the expression of SLC38A4 [2]

  Folic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Folic Acid increases the expression of SLC38A4 [3]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine inhibits the expression of SLC38A4 [4]

  Belinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Belinostat increases the expression of SLC38A4 [5]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane inhibits the expression of SLC38A4 [6]

  Estradiol

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol inhibits the expression of SLC38A4 [7]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC38A4 [8]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC38A4 [9]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC38A4 [10]

Drug in Phase 3 Trial

  Triclosan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Triclosan inhibits the expression of SLC38A4 [22]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC38A4 [19]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin inhibits the expression of SLC38A4 [7]

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A inhibits the expression of SLC38A4 [5]

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC38A4 [20]

  Dihydrotestosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dihydrotestosterone increases the expression of SLC38A4 [21]

Drug in Preclinical Test

  (+)-JQ1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-JQ1 inhibits the expression of SLC38A4 [15]

Investigative Drug

  [3H]Alanine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

[3H]Alanine modulates the activity of SLC38A4 [26]

  Glycine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

[14C]Glycine modulates the activity of SLC38A4 [26]

Natural Product

  Methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyleugenol inhibits the expression of SLC38A4 [23]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC38A4 [24]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of SLC38A4 mRNA [42]

Regulation Mechanism

Transcription Factor Info

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin inhibits the expression of SLC38A4 [14]

Mycotoxins

  Aflatoxin B1

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 inhibits the expression of SLC38A4 [25]

  DT Modulation2

Aflatoxin B1 affects the expression of SLC38A4 protein [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Aflatoxin B1 results in decreased methylation of SLC38A4 gene [25]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde increases the expression of SLC38A4 [18]

Carcinogen

  Benzo(a)pyrene

           5 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC38A4 [23]

  Nickel

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Nickel results in decreased expression of SLC38A4 mRNA [39]

Regulation Mechanism

Transcription Factor Info

Pesticide/Insecticide

  Endosulfan

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Endosulfan inhibits the expression of SLC38A4 [14]

  Dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dicrotophos inhibits the expression of SLC38A4 [17]

Health and Environmental Toxicant

  Kojic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Kojic acid inhibits the expression of SLC38A4 [11]

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of SLC38A4 [12]

  DT Modulation1

Endosulfan co-treated with Tetrachlorodibenzodioxin results in decreased expression of SLC38A4 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Perfluorooctane sulfonic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Perfluorooctane sulfonic acid inhibits the expression of SLC38A4 [16]

Chemical Compound

  DT Modulation1

Estradiol affects the expression of SLC38A4 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Estradiol co-treated with TGFB1 protein results in increased expression of SLC38A4 mRNA [38]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Valproic Acid affects the expression of SLC38A4 mRNA [47]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in decreased methylation of SLC38A4 gene [48]

Regulation Mechanism

Transcription Factor Info

  Pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Pentanal increases the expression of SLC38A4 [13]

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC38A4 promoter [31]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC38A4 3' UTR [31]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in increased methylation of SLC38A4 5' UTR [31]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

Benzo(a)pyrene results in increased methylation of SLC38A4 exon [31]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-Methyl-4-phenylpyridinium results in increased expression of SLC38A4 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with belinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  Aldehydes

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aldehydes results in increased expression of SLC38A4 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  allyl sulfide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

allyl sulfide inhibits the reaction tobacco tar analog results in decreased expression of SLC38A4 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  belinostat

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

belinostat results in increased expression of SLC38A4 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with belinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in decreased expression of SLC38A4 mRNA [32]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in increased expression of SLC38A4 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC38A4 gene [33]

Regulation Mechanism

Transcription Factor Info

  chromium hexavalent ion

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

chromium hexavalent ion results in decreased expression of SLC38A4 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

dicrotophos results in decreased expression of SLC38A4 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  didecyldimethylammonium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

didecyldimethylammonium results in decreased expression of SLC38A4 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with belinostat co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC38A4 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  kojic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

kojic acid results in decreased expression of SLC38A4 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methyleugenol results in decreased expression of SLC38A4 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC38A4 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  pentanal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pentanal results in increased expression of SLC38A4 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  perfluorooctane sulfonic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluorooctane sulfonic acid results in decreased expression of SLC38A4 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  pirinixic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pirinixic acid binds to and results in increased activity of PPARA protein which results in increased expression of SLC38A4 mRNA [41]

Regulation Mechanism

Transcription Factor Info

  potassium chromate(VI)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC38A4 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

potassium chromate(VI) results in decreased expression of SLC38A4 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide results in decreased expression of SLC38A4 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC38A4 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased expression of SLC38A4 mRNA [44]

Regulation Mechanism

Transcription Factor Info

  testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

testosterone enanthate affects the expression of SLC38A4 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Endosulfan co-treated with Tetrachlorodibenzodioxin results in decreased expression of SLC38A4 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Tetrachlorodibenzodioxin affects the expression of SLC38A4 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Tetrachlorodibenzodioxin results in decreased expression of SLC38A4 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

Tetrachlorodibenzodioxin results in increased expression of SLC38A4 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC38A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

trichostatin A results in decreased expression of SLC38A4 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

trichostatin A results in increased expression of SLC38A4 mRNA [45]

Regulation Mechanism

Transcription Factor Info

  urushiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

urushiol results in decreased expression of SLC38A4 mRNA [46]

Regulation Mechanism

Transcription Factor Info

  Vanadates

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vanadates results in increased expression of SLC38A4 mRNA [44]

Regulation Mechanism

Transcription Factor Info
References
1 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802.
2 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
3 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92.
4 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
5 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
6 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
9 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
10 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
11 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
12 Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 2014 May 8;5(5):e1222.
13 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
14 Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie. 2015 Sep;116:79-91.
15 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
16 The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol. 2016 Aug 1;304:18-29.
17 Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol. 2017 May;103:253-260.
18 Regulation of Chromatin Assembly and Cell Transformation by Formaldehyde Exposure in Human Cells. Environ Health Perspect. 2017 Sep 21;125(9):097019.
19 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
20 Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci. 2018 Apr 1;162(2):676-687.
21 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
22 Transcriptome and DNA Methylome Dynamics during Triclosan-Induced Cardiomyocyte Differentiation Toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
23 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
24 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
25 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
26 Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Target id: 1171).
27 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
28 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
29 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
30 Long term exposure of cigarette smoke condensate (CSC) mediates transcriptomic changes in normal human lung epithelial Beas-2b cells and protection by garlic compounds. Food Chem Toxicol. 2023;174:113656.
31 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
32 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
33 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
34 Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis. Toxicol Lett. 2019;305:40-50.
35 Formation of lamellar body-like structure may be an initiator of didecyldimethylammonium chloride-induced toxic response. Toxicol Appl Pharmacol. 2020;404:115182.
36 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
37 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711.
38 Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res. 2018 Aug 30;19(1):160.
39 Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362-72.
40 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
41 Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS One. 2009;4(8):e6796.
42 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
43 Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells. Part Fibre Toxicol. 2012;9(1):6.
44 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.
45 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
46 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020;386:114828.
47 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
48 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.