General Information of Drug Transporter (DT)
DT ID DTD0293 Transporter Info
Gene Name SLC35B2
Transporter Name Adenosine 3'-phospho 5'-phosphosulfate transporter 1
Gene ID
347734
UniProt ID
Q8TB61
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid results in decreased expression of SLC35B2 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  Acrolein

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  alpha-pinene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in decreased expression of SLC35B2 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

aristolochic acid I results in decreased expression of SLC35B2 protein [11]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC35B2 3' UTR [12]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC35B2 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC35B2 gene [14]

Regulation Mechanism

Transcription Factor Info

  chloropicrin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

chloropicrin affects the expression of SLC35B2 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  coumarin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

coumarin results in decreased phosphorylation of SLC35B2 protein [15]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC35B2 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC35B2 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  FR900359

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

FR900359 results in decreased phosphorylation of SLC35B2 protein [18]

Regulation Mechanism

Transcription Factor Info

  ICG 001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG 001 results in decreased expression of SLC35B2 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  methacrylaldehyde

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  Ozone

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Volatile Organic Compounds co-treated with Ozone results in increased oxidation of SLC35B2 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  perfluorooctanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluorooctanoic acid results in decreased expression of SLC35B2 protein [19]

Regulation Mechanism

Transcription Factor Info

  potassium chromate(VI)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC35B2 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

potassium chromate(VI) results in decreased expression of SLC35B2 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Rotenone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rotenone results in decreased expression of SLC35B2 protein [20]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC35B2 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC35B2 mRNA [21]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC35B2 mRNA [13]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC35B2 [1]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC35B2 [2]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid affects the expression of SLC35B2 [3]

  Dronabinol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dronabinol inhibits the expression of SLC35B2 [4]

  Ivermectin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ivermectin inhibits the expression of SLC35B2 [5]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC35B2 [6]

Patented Pharmaceutical Agent

  ICG-001

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

ICG-001 inhibits the expression of SLC35B2 [7]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC35B2 [9]

Acute Toxic Substance

  Chloropicrin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Chloropicrin affects the expression of SLC35B2 [8]
References
1 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
4 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975.
6 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
7 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
8 Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
9 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
10 Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol. 2020;3(1):392.
11 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
13 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
14 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022;449:116110.
16 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
17 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
18 Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics. 2023;22(11):100649.
19 High perfluorooctanoic acid exposure induces autophagy blockage and disturbs intracellular vesicle fusion in the liver. Arch Toxicol. 2017;91(1):247-258.
20 Proteomic analysis of human iPSC-derived sympathetic neurons identifies proteostasis collapse as a molecular signature following subtoxic rotenone exposure. Toxicology. 2025;510:154015.
21 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.