General Information of Drug Transporter (DT)
DT ID DTD0290 Transporter Info
Gene Name SLC35A4
Transporter Name Probable UDP-sugar transporter protein SLC35A4
Gene ID
113829
UniProt ID
Q96G79
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

4-(4-((5-(4,5-dimethyl-2-nitrophenyl)-2-furanyl)methylene)-4,5-dihydro-3-methyl-5-oxo-1H-pyrazol-1-yl)benzoic acid results in decreased expression of SLC35A4 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC35A4 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC35A4 promoter [19]

Regulation Mechanism

Transcription Factor Info

  beta-methylcholine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-methylcholine affects the expression of SLC35A4 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

butyraldehyde results in decreased expression of SLC35A4 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC35A4 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC35A4 gene [22]

Regulation Mechanism

Transcription Factor Info

  corosolic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

corosolic acid results in decreased expression of SLC35A4 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

dicrotophos results in increased expression of SLC35A4 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC35A4 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  Diuron

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diuron results in decreased expression of SLC35A4 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC35A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased expression of SLC35A4 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC35A4 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

trichostatin A inhibits the reaction Nickel affects the expression of SLC35A4 mRNA [26]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in decreased methylation of SLC35A4 gene [17]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC35A4 mRNA [21]

Regulation Mechanism

Transcription Factor Info

  Nickel

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Nickel affects the expression of SLC35A4 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

trichostatin A inhibits the reaction Nickel affects the expression of SLC35A4 mRNA [26]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC35A4 [1]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine increases the expression of SLC35A4 [2]

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC35A4 [3]

  Dronabinol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dronabinol increases the expression of SLC35A4 [4]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib inhibits the expression of SLC35A4 [5]

  Ivermectin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ivermectin inhibits the expression of SLC35A4 [6]

  Tretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin inhibits the expression of SLC35A4 [7]

  Testosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone inhibits the expression of SLC35A4 [8]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite increases the expression of SLC35A4 [15]

Patented Pharmaceutical Agent

  GSK-J4

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

GSK-J4 inhibits the expression of SLC35A4 [13]

Natural Product

  14-deoxy-11,12-didehydroandrographolide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

14-deoxy-11,12-didehydroandrographolide inhibits the expression of SLC35A4 [9]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC35A4 [14]

Pesticide/Insecticide

  Dicrotophos

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dicrotophos increases the expression of SLC35A4 [11]

Health and Environmental Toxicant

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde inhibits the expression of SLC35A4 [10]

  Lead

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lead affects the expression of SLC35A4 [12]
References
1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
3 Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights. 2016 Aug 24;11:113-21.
4 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89.
5 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975.
7 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423.
8 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384.
9 Identification of genes involved in the regulation of 14-deoxy-11,12-didehydroandrographolide-induced toxicity in T-47D mammary cells. Food Chem Toxicol. 2012 Feb;50(2):431-44.
10 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
11 Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food Chem Toxicol. 2017 May;103:253-260.
12 RNA-Seq of Human Neural Progenitor Cells Exposed to Lead (Pb) Reveals Transcriptome Dynamics, Splicing Alterations and Disease Risk Associations. Toxicol Sci. 2017 Sep 1;159(1):251-265.
13 Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018 Feb 16;293(7):2422-2437.
14 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
15 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
16 Altering cancer transcriptomes using epigenomic inhibitors. Epigenetics Chromatin. 2015 Feb 24;8:9.
17 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
18 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
19 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
20 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352.
21 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
22 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
23 Quantitative transcriptomic and proteomic analysis reveals corosolic acid inhibiting bladder cancer via suppressing cell cycle and inducing mitophagy in vitro and in vivo. Toxicol Appl Pharmacol. 2023;480:116749.
24 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
25 The DCMU Herbicide Shapes T-cell Functions By Modulating Micro-RNA Expression Profiles. Front Immunol. 2022;13:925241.
26 Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. Toxicol Appl Pharmacol. 2003;192(3):201-11.
27 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.