General Information of Drug Transporter (DT)
DT ID DTD0282 Transporter Info
Gene Name SLC33A1
Transporter Name Acetyl-coenzyme A transporter 1
Gene ID
9197
UniProt ID
O00400
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC33A1 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC33A1 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

avobenzone results in increased expression of SLC33A1 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A affects the expression of SLC33A1 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in decreased expression of SLC33A1 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  Copper

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC 689534 binds to Copper which results in increased expression of SLC33A1 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  deoxynivalenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

deoxynivalenol results in decreased expression of SLC33A1 protein [21]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC33A1 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC33A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  FR900359

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

FR900359 results in decreased phosphorylation of SLC33A1 protein [24]

Regulation Mechanism

Transcription Factor Info

  K 7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K 7174 results in increased expression of SLC33A1 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Manganese

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

manganese chloride results in increased abundance of Manganese which results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  manganese chloride

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

manganese chloride results in increased abundance of Manganese which results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Naphthoquinones

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Naphthoquinones results in increased expression of SLC33A1 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  NSC 689534

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC 689534 binds to Copper which results in increased expression of SLC33A1 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  PCI 5002

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

PCI 5002 co-treated with Zinc results in increased expression of SLC33A1 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  perfluorooctanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluorooctanoic acid results in increased expression of SLC33A1 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  potassium chromate(VI)

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

potassium chromate(VI) co-treated with epigallocatechin gallate results in decreased expression of SLC33A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

potassium chromate(VI) results in decreased expression of SLC33A1 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC33A1 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC33A1 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  Zinc

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

PCI 5002 co-treated with Zinc results in increased expression of SLC33A1 mRNA [26]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC33A1 [1]

  Acetaminophen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC33A1 [2]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC33A1 [3]

  Avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Avobenzone increases the expression of SLC33A1 [4]

  Ivermectin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ivermectin inhibits the expression of SLC33A1 [5]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine increases the expression of SLC33A1 [6]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A affects the expression of SLC33A1 [12]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin inhibits the expression of SLC33A1 [7]

  Dihydrotestosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dihydrotestosterone increases the expression of SLC33A1 [11]

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC33A1 [14]

Patented Pharmaceutical Agent

  K-7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K-7174 increases the expression of SLC33A1 [9]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC33A1 [10]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in increased expression of SLC33A1 mRNA [28]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 inhibits the expression of SLC33A1 [8]

  DT Modulation2

Aflatoxin B1 results in decreased methylation of SLC33A1 gene [16]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC33A1 [13]

  Arsenic

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC33A1 mRNA [18]

Regulation Mechanism

Transcription Factor Info
References
1 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. Arch Toxicol. 2019 Jul;93(7):1903-1915.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975.
6 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):176-87.
9 A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013 Sep 27;8(9):e75568.
10 Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicol In Vitro. 2017 Dec;45(Pt 3):417-425.
11 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
12 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134.
13 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
14 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
15 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
16 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
17 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
18 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
19 Differential effect of the duration of exposure on the carcinogenicity of cadmium in MCF10A mammary epithelial cells. Food Chem Toxicol. 2024;186:114523.
20 A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med. 2011 Jan 1;50(1):110-21.
21 Alterations in the proteomes of HepG2 and IHKE cells inflicted by six selected mycotoxins. Arch Toxicol. 2025;99(2):701-715.
22 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
23 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
24 Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics. 2023;22(11):100649.
25 The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells. Chem Biol Interact. 2013;205(2):119-27.
26 Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008 Jul 1;68(13):5318-25.
27 Perfluoroalkyl substances (PFASs) decrease the expression of recombination-activating genes (RAG1 and RAG2) in human B lymphoma Namalwa cells. Arch Toxicol. 2022;97(2):457-68.
28 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
29 Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite. Toxicol Appl Pharmacol. 2017 Sep 15;331:130-134.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.