General Information of Drug Transporter (DT)
DT ID DTD0253 Transporter Info
Gene Name SLC2A11
Transporter Name Glucose transporter type 11
Gene ID
66035
UniProt ID
Q9BYW1
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cisplatin co-treated with jinfukang results in increased expression of SLC2A11 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in decreased methylation of SLC2A11 5' UTR [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in decreased methylation of SLC2A11 exon [14]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in decreased methylation of SLC2A11 promoter [14]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC2A11 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in increased expression of SLC2A11 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

butyraldehyde results in decreased expression of SLC2A11 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in decreased expression of SLC2A11 mRNA [3]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC2A11 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Fructose

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

SLC2A11 protein results in increased transport of Fructose [17]

Regulation Mechanism

Transcription Factor Info

  Glucose

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

SLC2A11 protein results in increased transport of Glucose [17]

Regulation Mechanism

Transcription Factor Info

  gossypol acetic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

gossypol acetic acid results in increased expression of SLC2A11 protein [18]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC2A11 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  Oxygen

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Oxygen deficiency results in decreased expression of SLC2A11 mRNA [3]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin results in increased expression of SLC2A11 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC2A11 mRNA [16]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC2A11 [1]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine increases the expression of SLC2A11 [2]

  Cidofovir

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cidofovir affects the expression of SLC2A11 [3]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC2A11 [3]

  Zoledronic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zoledronic Acid inhibits the expression of SLC2A11 [3]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Leflunomide increases the expression of SLC2A11 [4]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin increases the expression of SLC2A11 [5]

Drug Marketed but not Approved by US FDA

  Clodronic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Clodronic Acid increases the expression of SLC2A11 [3]

Patented Pharmaceutical Agent

  GSK-J4

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

GSK-J4 inhibits the expression of SLC2A11 [10]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC2A11 [11]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang increases the expression of SLC2A11 [9]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin increases the expression of SLC2A11 [12]

Carcinogen

  Benzo(a)pyrene

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene increases the expression of SLC2A11 [6]

Health and Environmental Toxicant

  Butyraldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Butyraldehyde inhibits the expression of SLC2A11 [7]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate increases the expression of SLC2A11 [8]
References
1 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
2 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
3 Transcriptomics hit the target: Monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
4 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
5 Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
7 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
8 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
9 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
10 Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem. 2018 Feb 16;293(7):2422-2437.
11 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
12 High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Toxicol Sci. 2012 Dec;130(2):349-61.
13 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
15 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
16 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
17 A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol. 2007;24(5-6):455-63.
18 AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy. 2018;14(10):1693-1709.
19 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.