General Information of Drug Transporter (DT)
DT ID DTD0252 Transporter Info
Gene Name SLC2A10
Transporter Name Glucose transporter type 10
Gene ID
81031
UniProt ID
O95528
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cyclosporine results in increased expression of SLC2A10 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Valproic Acid affects the expression of SLC2A10 mRNA [32]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid results in increased expression of SLC2A10 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC2A10 promoter [23]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC2A10 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in increased expression of SLC2A10 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC2A10 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  decabromobiphenyl ether

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

decabromobiphenyl ether affects the expression of SLC2A10 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

epigallocatechin gallate results in decreased expression of SLC2A10 protein [9]

Regulation Mechanism

Transcription Factor Info

  Fulvestrant

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Fulvestrant results in decreased methylation of SLC2A10 gene [27]

Regulation Mechanism

Transcription Factor Info

  mono-(2-ethylhexyl)phthalate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

mono-(2-ethylhexyl)phthalate results in increased expression of SLC2A10 mRNA [28]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC2A10 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine co-treated with Lipopolysaccharides results in decreased expression of SLC2A10 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC2A10 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

trichostatin A results in increased expression of SLC2A10 mRNA [15]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Folic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Folic Acid inhibits the expression of SLC2A10 [1]

  Azathioprine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Azathioprine inhibits the expression of SLC2A10 [2]

  Tretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin inhibits the expression of SLC2A10 [3]

  Zidovudine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Zidovudine inhibits the expression of SLC2A10 [4]

  Cyclosporine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC2A10 [5]

  Vorinostat

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vorinostat inhibits the expression of SLC2A10 [6]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane inhibits the expression of SLC2A10 [7]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC2A10 [8]

  Caffeine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Caffeine inhibits the expression of SLC2A10 [9]

  Cannabidiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cannabidiol increases the expression of SLC2A10 [10]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib inhibits the expression of SLC2A10 [11]

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol inhibits the expression of SLC2A10 [12]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC2A10 [13]

Drug in Phase 3 Trial

  Epigallocatechin gallate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Epigallocatechin gallate inhibits the expression of SLC2A10 [9]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC2A10 [17]

Drug in Phase 1 Trial

  Quercetin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Quercetin increases the expression of SLC2A10 [14]

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC2A10 [15]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC2A10 [19]

  Resveratrol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Plant Extracts co-treated with Resveratrol results in decreased expression of SLC2A10 mRNA [30]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 inhibits the expression of SLC2A10 [18]

  DT Modulation2

Aflatoxin B1 results in decreased methylation of SLC2A10 intron [21]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Benzo(a)pyrene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC2A10 [14]

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC2A10 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in increased expression of SLC2A10 mRNA [24]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate inhibits the expression of SLC2A10 [16]
References
1 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92.
2 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
3 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
4 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621.
10 Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020 Jan;28:101321.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
12 17 beta-Estradiol Activates HSF1 via MAPK Signaling in ER alpha-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
19 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
20 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
21 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
22 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
24 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
25 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
26 Toxic effects of decabromodiphenyl ether (BDE-209) on human embryonic kidney cells. Front Genet. 2014 May 6;5:118.
27 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
28 Exposure to the phthalate metabolite MEHP impacts survival and growth of human ovarian follicles in vitro. Toxicology. 2024;505:153815.
29 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
30 One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69-82.
31 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.
32 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.