General Information of Drug Transporter (DT)
DT ID DTD0177 Transporter Info
Gene Name SLC25A18
Transporter Name Mitochondrial glutamate carrier 2
Gene ID
83733
UniProt ID
Q9H1K4
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  1-Methyl-3-isobutylxanthine

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol S results in decreased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC25A18 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC25A18 promoter [12]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC25A18 3' UTR [12]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in increased methylation of SLC25A18 5' UTR [12]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in decreased methylation of SLC25A18 gene [13]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol S results in decreased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin co-treated with jinfukang results in decreased expression of SLC25A18 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  Dexamethasone

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol S results in decreased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Dichlorodiphenyl Dichloroethylene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Dichlorodiphenyl Dichloroethylene results in increased expression of SLC25A18 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol co-treated with TGFB1 protein results in decreased expression of SLC25A18 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  Indomethacin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol A results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin co-treated with bisphenol S results in decreased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

INS protein co-treated with Dexamethasone co-treated with 1-Methyl-3-isobutylxanthine co-treated with Indomethacin results in increased expression of SLC25A18 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC25A18 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Palmitic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Palmitic Acid results in decreased expression of SLC25A18 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC25A18 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin results in decreased expression of SLC25A18 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC25A18 mRNA [14]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Nickel

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Nickel results in decreased expression of SLC25A18 mRNA [16]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in decreased expression of SLC25A18 mRNA [19]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Amiodarone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Amiodarone increases the expression of SLC25A18 [1]

  Acetaminophen

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC25A18 [2]

  DT Modulation2

Acetaminophen results in increased expression of SLC25A18 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC25A18 [3]

  Cyclosporine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine inhibits the expression of SLC25A18 [4]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang inhibits the expression of SLC25A18 [7]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin inhibits the expression of SLC25A18 [5]

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 inhibits the expression of SLC25A18 [6]

Acute Toxic Substance

  Acrylamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrylamide increases the expression of SLC25A18 [8]
References
1 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
2 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
5 The cutaneous lesions of dioxin exposure: lessons from the poisoning of Victor Yushchenko. Toxicol Sci. 2012 Jan;125(1):310-7.
6 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Acrylamide exposure represses neuronal differentiation, induces cell apoptosis and promotes tau hyperphosphorylation in hESC-derived 3D cerebral organoids. Food Chem Toxicol. 2020 Oct;144:111643.
9 Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS One. 2017;12(6):e0179583.
10 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
11 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
14 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
15 Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res. 2018 Aug 30;19(1):160.
16 Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol. 2014;134(2):362-72.
17 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
18 Palmitic Acid Induced a Dedifferentiation Profile at the Transcriptome Level: A Collagen Synthesis but no Triglyceride Accumulation in Hepatocyte-Like Cells Derived From Human-Induced Pluripotent Stem Cells Cultivated Inside Organ on a Chip. J Appl Toxicol. 2025;45(3):460-471.
19 Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol. 2020 Sep;94(9):3137-3155.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.