General Information of Drug Transporter (DT)
DT ID DTD0160 Transporter Info
Gene Name SLC23A3
Transporter Name Na(+)/L-ascorbic acid transporter 3
Gene ID
151295
UniProt ID
Q6PIS1
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  2,5,2',5'-tetrachlorobiphenyl

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2,5,2',5'-tetrachlorobiphenyl analog results in decreased expression of SLC23A3 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC23A3 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene results in increased methylation of SLC23A3 promoter [9]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC23A3 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  CGP 52608

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

CGP 52608 promotes the reaction RORA protein binds to SLC23A3 gene [11]

Regulation Mechanism

Transcription Factor Info

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin co-treated with jinfukang results in decreased expression of SLC23A3 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  di-n-butylphosphoric acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

di-n-butylphosphoric acid affects the expression of SLC23A3 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  Hydralazine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydralazine co-treated with Valproic Acid results in increased expression of SLC23A3 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  methylmercuric chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methylmercuric chloride results in increased expression of SLC23A3 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  propionaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

propionaldehyde results in increased expression of SLC23A3 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  S-Nitrosoglutathione

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-Nitrosoglutathione results in decreased expression of SLC23A3 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC23A3 mRNA [4]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin affects the expression of SLC23A3 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  tris(2-butoxyethyl) phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(2-butoxyethyl) phosphate affects the expression of SLC23A3 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Hydralazine co-treated with Valproic Acid results in increased expression of SLC23A3 mRNA [14]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC23A3 mRNA [10]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Rifampin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rifampin inhibits the expression of SLC23A3 [2]

  Urethane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Urethane increases the expression of SLC23A3 [3]

Drug Marketed but not Approved by US FDA

  Arbutin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arbutin increases the expression of SLC23A3 [1]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC23A3 [4]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC23A3 [5]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin affects the expression of SLC23A3 [6]
References
1 Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci. 2007 Jan;14(1):87-105.
2 Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol. 2016 Apr 26;7:111.
3 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
4 Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci. 2018 Apr 1;162(2):676-687.
5 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
6 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711.
7 Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro. 2023;89:105568.
8 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
10 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
11 Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6-15.
12 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
13 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
14 A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One. 2006;1(1):e98.
15 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
16 Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology. 2015 Aug 6;334:111-21.
17 Transcriptome analysis in various cell lines exposed to nitric oxide. J Toxicol Sci. 2024;49(6):281-288.
18 Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 2012 May;127(1):199-215.
19 Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro. 2018;46:178-188.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.