General Information of Drug Transporter (DT)
DT ID DTD0113 Transporter Info
Gene Name SLC16A9
Transporter Name Monocarboxylate transporter 9
Gene ID
220963
UniProt ID
Q7RTY1
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-Methyl-4-phenylpyridinium results in increased expression of SLC16A9 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC16A9 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in decreased expression of SLC16A9 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

avobenzone results in decreased expression of SLC16A9 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC16A9 5' UTR [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in increased methylation of SLC16A9 promoter [26]

Regulation Mechanism

Transcription Factor Info

  beta-methylcholine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-methylcholine affects the expression of SLC16A9 mRNA [27]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC16A9 gene [28]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased expression of SLC16A9 mRNA [19]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

bisphenol A results in increased methylation of SLC16A9 gene [28]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in decreased expression of SLC16A9 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC16A9 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  Copper

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC 689534 binds to Copper which results in decreased expression of SLC16A9 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  Fulvestrant

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A co-treated with Fulvestrant results in increased methylation of SLC16A9 gene [28]

Regulation Mechanism

Transcription Factor Info

  Levonorgestrel

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

testosterone undecanoate co-treated with Levonorgestrel results in decreased expression of SLC16A9 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  licochalcone B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

licochalcone B results in decreased expression of SLC16A9 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  Manganese

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  manganese chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  Methyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyl Methanesulfonate results in decreased expression of SLC16A9 mRNA [13]

Regulation Mechanism

Transcription Factor Info

  Mustard Gas

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Mustard Gas results in decreased expression of SLC16A9 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  Niclosamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Niclosamide results in increased expression of SLC16A9 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  N-Nitrosopyrrolidine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

N-Nitrosopyrrolidine results in increased expression of SLC16A9 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  NSC 689534

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NSC 689534 binds to Copper which results in decreased expression of SLC16A9 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  S-(1,2-dichlorovinyl)cysteine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

S-(1,2-dichlorovinyl)cysteine affects the susceptibility to Lipopolysaccharides which results in increased expression of SLC16A9 mRNA [38]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  testosterone undecanoate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

testosterone undecanoate co-treated with Levonorgestrel results in decreased expression of SLC16A9 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

testosterone undecanoate results in decreased expression of SLC16A9 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A9 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

trichostatin A results in decreased expression of SLC16A9 mRNA [39]

Regulation Mechanism

Transcription Factor Info

Environmental toxicant

  Lead

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Lead affects the methylation of SLC16A9 gene [32]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in increased expression of SLC16A9 mRNA [37]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Testosterone undecanoate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone undecanoate inhibits the expression of SLC16A9 [1]

  Cytarabine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cytarabine increases the expression of SLC16A9 [2]

  Carbamazepine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Carbamazepine affects the expression of SLC16A9 [3]

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC16A9 [4]

  Valproic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC16A9 [5]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Leflunomide increases the expression of SLC16A9 [6]

  Avobenzone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Avobenzone inhibits the expression of SLC16A9 [8]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib inhibits the expression of SLC16A9 [9]

  Estradiol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol increases the expression of SLC16A9 [10]

  Temozolomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Temozolomide increases the expression of SLC16A9 [11]

Drug Marketed but not Approved by US FDA

  Rotenone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rotenone increases the expression of SLC16A9 [7]

Drug in Phase 2 Trial

  Ethanol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ethanol increases the expression of SLC16A9 [18]

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC16A9 [19]

Drug in Phase 1 Trial

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A inhibits the expression of SLC16A9 [16]

Drug in Preclinical Test

  (+)-JQ1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-JQ1 inhibits the expression of SLC16A9 [21]

Investigative Drug

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate inhibits the expression of SLC16A9 [16]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC16A9 [20]

Mycotoxins

  Aflatoxin B1

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 increases the expression of SLC16A9 [12]

  DT Modulation2

Aflatoxin B1 results in decreased methylation of SLC16A9 gene [23]

Regulation Mechanism

Transcription Factor Info

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde inhibits the expression of SLC16A9 [13]

  Thimerosal

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thimerosal increases the expression of SLC16A9 [17]

Carcinogen

  Ethyl Methanesulfonate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ethyl Methanesulfonate inhibits the expression of SLC16A9 [13]

  Arsenic

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic co-treated with manganese chloride results in increased abundance of Manganese results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in increased expression of SLC16A9 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  Cadmium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased abundance of Cadmium which results in decreased expression of SLC16A9 mRNA [29]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of SLC16A9 [14]

  tris(1,3-dichloro-2-propyl)phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(1,3-dichloro-2-propyl)phosphate affects the expression of SLC16A9 [15]
References
1 Levonorgestrel enhances spermatogenesis suppression by testosterone with greater alteration in testicular gene expression in men. Biol Reprod. 2009 Mar;80(3):484-92.
2 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
3 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
6 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
7 Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol. 2018 Aug;92(8):2587-2606.
8 A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells. Arch Toxicol. 2019 Jul;93(7):1903-1915.
9 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
10 17 beta-Estradiol Activates HSF1 via MAPK Signaling in ER alpha-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533.
11 Temozolomide induces activation of Wnt/beta-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278.
12 Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):176-87.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 2014 May 8;5(5):e1222.
15 Defensive and adverse energy-related molecular responses precede tris (1, 3-dichloro-2-propyl) phosphate cytotoxicity. J Appl Toxicol. 2016 May;36(5):649-58.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
18 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
19 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
20 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
21 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
22 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
23 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
24 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
25 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
26 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
27 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352.
28 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
29 Cadmium acute exposure induces metabolic and transcriptomic perturbations in human mature adipocytes. Toxicology. 2022;470:153153.
30 Evaluation of Cd-induced cytotoxicity in primary human keratinocytes. Hum Exp Toxicol. 2024;43:9603271231224458.
31 A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med. 2011 Jan 1;50(1):110-21.
32 Blood DNA methylation biomarkers of cumulative lead exposure in adults. J Expo Sci Environ Epidemiol. 2021;31(1):108-116.
33 Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol. 2021;150:112096.
34 Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard. Toxicol Lett. 2014;230(3):393-401.
35 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023;83(2):181-194.
36 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
37 Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol. 2020 Sep;94(9):3137-3155.
38 The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro. 2022;84:105429.
39 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.