General Information of Drug Transporter (DT)
DT ID DTD0111 Transporter Info
Gene Name SLC16A7
Transporter Name Monocarboxylate transporter 2
Gene ID
9194
UniProt ID
O60669
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Estradiol co-treated with Norethindrone Acetate results in decreased expression of SLC16A7 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Estradiol co-treated with Tetrachlorodibenzodioxin results in increased expression of SLC16A7 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Estradiol co-treated with TGFB1 protein results in decreased expression of SLC16A7 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Cisplatin co-treated with jinfukang results in decreased expression of SLC16A7 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Tretinoin affects the expression of SLC16A7 mRNA [2]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Tretinoin results in increased expression of SLC16A7 mRNA [42]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC16A7 mRNA [45]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Valproic Acid results in decreased methylation of SLC16A7 gene [46]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  3-iodothyronamine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

SLC16A7 mRNA affects the uptake of 3-iodothyronamine [21]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with p-Chloromercuribenzoic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide results in decreased expression of SLC16A7 mRNA [23]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC16A7 mRNA [24]

Regulation Mechanism

Transcription Factor Info

  Acrolein

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  alpha-pinene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  AR C155858

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

AR C155858 results in decreased activity of SLC16A7 protein [28]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in decreased expression of SLC16A7 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC16A7 intron [27]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A results in increased expression of SLC16A7 protein [18]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

bisphenol A results in increased methylation of SLC16A7 gene [31]

Regulation Mechanism

Transcription Factor Info

  bisphenol AF

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol AF results in increased expression of SLC16A7 protein [18]

Regulation Mechanism

Transcription Factor Info

  bisphenol B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol B results in increased expression of SLC16A7 protein [18]

Regulation Mechanism

Transcription Factor Info

  bisphenol F

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol F results in increased expression of SLC16A7 protein [18]

Regulation Mechanism

Transcription Factor Info

  bisphenol S

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol S results in increased expression of SLC16A7 protein [18]

Regulation Mechanism

Transcription Factor Info

  coumarin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

coumarin results in increased phosphorylation of SLC16A7 protein [32]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with p-Chloromercuribenzoic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

NOG protein co-treated with Phenylmercuric Acetate co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation4

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  gallium arsenide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

gallium arsenide results in decreased expression of SLC16A7 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  geldanamycin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

geldanamycin results in increased expression of SLC16A7 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  licochalcone B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

licochalcone B results in decreased expression of SLC16A7 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  methacrylaldehyde

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  methylselenic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methylselenic acid results in increased expression of SLC16A7 mRNA [37]

Regulation Mechanism

Transcription Factor Info

  Norethindrone Acetate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol co-treated with Norethindrone Acetate results in decreased expression of SLC16A7 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  Ozone

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Air Pollutants results in increased abundance of Acrolein co-treated with methacrylaldehyde co-treated with alpha-pinene co-treated with Ozone which results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Volatile Organic Compounds co-treated with Ozone results in decreased expression of SLC16A7 mRNA [26]

Regulation Mechanism

Transcription Factor Info

  p-Chloromercuribenzoic Acid

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with p-Chloromercuribenzoic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

p-Chloromercuribenzoic Acid results in decreased expression of SLC16A7 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide analog results in decreased expression of SLC16A7 mRNA [38]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Silicon Dioxide results in decreased expression of SLC16A7 mRNA [39]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC16A7 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC16A7 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  tamibarotene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tamibarotene affects the expression of SLC16A7 mRNA [2]

Regulation Mechanism

Transcription Factor Info

  testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

testosterone enanthate affects the expression of SLC16A7 mRNA [3]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol co-treated with Tetrachlorodibenzodioxin results in increased expression of SLC16A7 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Tetrachlorodibenzodioxin affects the expression of SLC16A7 mRNA [41]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Tetrachlorodibenzodioxin results in increased expression of SLC16A7 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  Thiram

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Thiram results in decreased expression of SLC16A7 mRNA [40]

Regulation Mechanism

Transcription Factor Info

  trichostatin A

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with trichostatin A co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in increased expression of SLC16A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

trichostatin A results in increased expression of SLC16A7 mRNA [43]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC16A7 mRNA [44]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in increased methylation of SLC16A7 intron [27]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in increased abundance of Arsenic which results in decreased expression of SLC16A7 mRNA [30]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Testosterone enanthate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone enanthate affects the expression of SLC16A7 [3]

  Copper Sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Copper Sulfate inhibits the expression of SLC16A7 [4]

  Estradiol

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Estradiol increases the expression of SLC16A7 [5]

  Isotretinoin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Isotretinoin inhibits the expression of SLC16A7 [6]

  Progesterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Progesterone inhibits the expression of SLC16A7 [7]

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC16A7 [8]

  Doxorubicin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Doxorubicin inhibits the expression of SLC16A7 [9]

  Tretinoin

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tretinoin inhibits the expression of SLC16A7 [10]

  Acetaminophen

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Acetaminophen inhibits the expression of SLC16A7 [11]

  DT Modulation2

Acetaminophen results in increased expression of SLC16A7 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  Valproic Acid

           4 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid increases the expression of SLC16A7 [12]

  Testosterone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Testosterone inhibits the activity of SLC16A7 [13]

Drug in Phase 2/3 Trial

  AM-80

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

AM-80 affects the expression of SLC16A7 [2]

Drug in Phase 2 Trial

  Bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol A increases the expression of SLC16A7 [18]

  Bisphenol B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol B increases the expression of SLC16A7 [18]

Drug in Phase 1 Trial

  Geldanamycin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Geldanamycin increases the expression of SLC16A7 [15]

  Trichostatin A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Trichostatin A increases the expression of SLC16A7 [15]

Investigative Drug

  AR-C155858

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

AR-C155858 inhibits the transportation of Ketone bodies and L-lactate by SLC16A7 (IC50 = 1 microM) [1]

Affected Drug/Substrate

Ketone bodies and L-lactate Modulation Type Inhibition

Cell System

Breast cancer cell lines-MCT2

  Phenylmercuric Acetate

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Phenylmercuric Acetate increases the expression of SLC16A7 [14]

Natural Product

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC16A7 [17]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang inhibits the expression of SLC16A7 [8]

Dietary Constituent

  Ketogenic diet

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Ketogenic diet induces the activity of SLC16A7 [20]

Environmental toxicant

  Bisphenol F

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Bisphenol F increases the expression of SLC16A7 [18]

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin increases the expression of SLC16A7 [19]

Acute Toxic Substance

  Formaldehyde

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Formaldehyde inhibits the expression of SLC16A7 [16]
References
1 Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014 Nov 30;5(22):11029-37.
2 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
3 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
6 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
7 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Bringing in vitro analysis closer to in vivo: Studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
10 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423.
11 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
12 Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
13 Developmental and hormonal regulation of the monocarboxylate transporter 2 (MCT2) expression in the mouse germ cells. Biol Reprod. 2003 Sep;69(3):1069-78.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
16 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
17 Multi-omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol In Vitro. 2019 Feb;54:251-262.
18 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730.
19 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
20 Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Struct Funct. 2015 Jan;220(1):1-12.
21 Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology. 2009 Apr;150(4):1991-9.
22 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
23 Temporal gene expression changes induced by a low concentration of benzo[a]pyrene diol epoxide in a normal human cell line. Mutat Res. 2010;684(1-2):74-80.
24 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
25 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
26 Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol. 2020;3(1):392.
27 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018;121:214-223.
28 Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation. Oncotarget. 2015;6(32):33568-86.
29 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
30 Using transcriptomic signatures to elucidate individual and mixture effects of inorganic arsenic and manganese in human placental trophoblast HTR-8/SVneo cells. Toxicol Sci. 2025;203(2):216-226.
31 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022;449:116110.
33 A microarray study on the effect of four hormone therapy regimens on gene transcription in whole blood from healthy postmenopausal women. Thromb Res. 2012;130(1):45-51.
34 Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res. 2018 Aug 30;19(1):160.
35 RNA Sequencing Analyses Reveal the Potential Mechanism of Pulmonary Injury Induced by Gallium Arsenide Particles in Human Bronchial Epithelioid Cells. Sci Rep. 2020;10(1):8685.
36 Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol. 2021;150:112096.
37 Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer. Cancer Genomics Proteomics. 2005;2(2):97-114.
38 High-throughput, quantitative assessment of the effects of low-dose silica nanoparticles on lung cells: grasping complex toxicity with a great depth of field. BMC Genomics. 2015;16(1):315.
39 Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells. Part Fibre Toxicol. 2012;9(1):6.
40 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
41 Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 2012 May;127(1):199-215.
42 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
43 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
44 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
45 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.
46 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.