General Information of Drug Transporter (DT)
DT ID DTD0088 Transporter Info
Gene Name SLC12A7
Transporter Name Electroneutral potassium-chloride cotransporter 4
Gene ID
10723
UniProt ID
Q9Y666
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cyclosporine results in decreased methylation of SLC12A7 promoter [26]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC12A7 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Valproic Acid affects the expression of SLC12A7 mRNA [36]

Regulation Mechanism

Transcription Factor Info

  1-hydroxypyrene

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-hydroxypyrene results in decreased expression of SLC12A7 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  1-Methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-Methyl-4-phenylpyridinium results in increased expression of SLC12A7 mRNA [10]

Regulation Mechanism

Transcription Factor Info

  2-palmitoylglycerol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2-palmitoylglycerol results in increased expression of SLC12A7 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC12A7 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in increased expression of SLC12A7 mRNA [18]

Regulation Mechanism

Transcription Factor Info

  Arsenicals

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenicals results in increased methylation of SLC12A7 promoter [20]

Regulation Mechanism

Transcription Factor Info

  Benzo(a)pyrene

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene affects the methylation of SLC12A7 promoter [21]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Benzo(a)pyrene results in decreased methylation of SLC12A7 3' UTR [21]

Regulation Mechanism

Transcription Factor Info

  DT Modulation3

Benzo(a)pyrene results in increased methylation of SLC12A7 exon [21]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in decreased expression of SLC12A7 mRNA [22]

Regulation Mechanism

Transcription Factor Info

  beta-Naphthoflavone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-Naphthoflavone results in decreased expression of SLC12A7 protein [23]

Regulation Mechanism

Transcription Factor Info

  bisphenol A

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

bisphenol A affects the methylation of SLC12A7 gene [24]

Regulation Mechanism

Transcription Factor Info

  Cadmium Chloride

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cadmium Chloride results in increased expression of SLC12A7 mRNA [25]

Regulation Mechanism

Transcription Factor Info

  Cisplatin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin co-treated with jinfukang results in increased expression of SLC12A7 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  Diazinon

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Diazinon results in increased methylation of SLC12A7 gene [27]

Regulation Mechanism

Transcription Factor Info

  dorsomorphin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

NOG protein co-treated with Valproic Acid co-treated with dorsomorphin co-treated with 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide results in decreased expression of SLC12A7 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  FR900359

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

FR900359 affects the phosphorylation of SLC12A7 protein [28]

Regulation Mechanism

Transcription Factor Info

  K 7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K 7174 results in increased expression of SLC12A7 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  licochalcone B

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

licochalcone B results in decreased expression of SLC12A7 mRNA [29]

Regulation Mechanism

Transcription Factor Info

  nickel sulfate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

nickel sulfate results in increased expression of SLC12A7 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in increased expression of SLC12A7 mRNA [31]

Regulation Mechanism

Transcription Factor Info

  Silicon Dioxide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Silicon Dioxide results in increased expression of SLC12A7 mRNA [32]

Regulation Mechanism

Transcription Factor Info

  sulforaphane

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sulforaphane results in increased expression of SLC12A7 mRNA [12]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tetrachlorodibenzodioxin affects the expression of SLC12A7 mRNA [33]

Regulation Mechanism

Transcription Factor Info

  DT Modulation2

Tetrachlorodibenzodioxin results in increased expression of SLC12A7 mRNA [34]

Regulation Mechanism

Transcription Factor Info

  triphenyl phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

triphenyl phosphate affects the expression of SLC12A7 mRNA [35]

Regulation Mechanism

Transcription Factor Info

  Vanadates

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vanadates results in decreased expression of SLC12A7 mRNA [30]

Regulation Mechanism

Transcription Factor Info

  Vanadium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vanadium results in decreased expression of SLC12A7 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  Vitamin K 3

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vitamin K 3 affects the expression of SLC12A7 mRNA [1]

Regulation Mechanism

Transcription Factor Info

Carcinogen

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenic affects the methylation of SLC12A7 gene [19]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Menadione

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Menadione affects the expression of SLC12A7 [1]

  Cyclosporine

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cyclosporine increases the expression of SLC12A7 [2]

  Methotrexate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methotrexate inhibits the expression of SLC12A7 [3]

  Leflunomide

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Leflunomide increases the expression of SLC12A7 [4]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib inhibits the expression of SLC12A7 [6]

  Valproic Acid

           3 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Valproic Acid inhibits the expression of SLC12A7 [7]

Drug Marketed but not Approved by US FDA

  Rotenone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Rotenone increases the expression of SLC12A7 [5]

Drug in Phase 3 Trial

  Sulforafan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sulforafan increases the expression of SLC12A7 [12]

Patented Pharmaceutical Agent

  K-7174

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

K-7174 increases the expression of SLC12A7 [9]

Natural Product

  Coal Ash

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Coal Ash increases the expression of SLC12A7 [8]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution increases the expression of SLC12A7 [13]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang increases the expression of SLC12A7 [11]

Environmental toxicant

  Polychlorinated dibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Polychlorinated dibenzodioxin increases the expression of SLC12A7 [14]

Health and Environmental Toxicant

  1-methyl-4-phenylpyridinium

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

1-methyl-4-phenylpyridinium increases the expression of SLC12A7 [10]
References
1 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
4 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
5 Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol. 2018 Aug;92(8):2587-2606.
6 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
7 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
8 Endothelial effects of emission source particles: acute toxic response gene expression profiles. Toxicol In Vitro. 2009 Feb;23(1):67-77.
9 A low-molecular-weight compound K7174 represses hepcidin: possible therapeutic strategy against anemia of chronic disease. PLoS One. 2013 Sep 27;8(9):e75568.
10 Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 2014 May 8;5(5):e1222.
11 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
12 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047.
13 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Whole genome expression in peripheral-blood samples of workers professionally exposed to polycyclic aromatic hydrocarbons. Chem Res Toxicol. 2011;24(10):1636-43.
16 Direct effect of 2-palmitoyl glycerol on promotion of gamma aminobutyric acid synthesis in normal human fetal-derived astrocytes. FEBS Open Bio. 2023;13(7):1320-1332.
17 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
18 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
19 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106.
20 Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015;28(6):1144-55.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
22 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
23 Alterations in the proteomes of HepG2 and IHKE cells inflicted by six selected mycotoxins. Arch Toxicol. 2025;99(2):701-715.
24 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019;11(1):138.
25 High-Throughput Transcriptomics of Nontumorigenic Breast Cells Exposed to Environmentally Relevant Chemicals. Environ Health Perspect. 2024;132(4):47002.
26 Integrative "-Omics" Analysis in Primary Human Hepatocytes Unravels Persistent Mechanisms of Cyclosporine A-Induced Cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
27 Genome-wide study of DNA methylation alterations in response to diazinon exposure in vitro. Environ Toxicol Pharmacol. 2012;34(3):959-68.
28 Protein Kinase Signaling Networks Driven by Oncogenic Gq/11 in Uveal Melanoma Identified by Phosphoproteomic and Bioinformatic Analyses. Mol Cell Proteomics. 2023;22(11):100649.
29 Integrated miRNA and mRNA omics reveal the anti-cancerous mechanism of Licochalcone B on Human Hepatoma Cell HepG2. Food Chem Toxicol. 2021;150:112096.
30 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.
31 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
32 Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Hum Mol Genet. 2015;24(5):1374-89.
33 Cross-species comparisons of transcriptomic alterations in human and rat primary hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 2012 May;127(1):199-215.
34 Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci. 2009 Nov;112(1):229-44.
35 Association between Organophosphate Ester Exposure and Insulin Resistance with Glycometabolic Disorders among Older Chinese Adults 60-69 Years of Age: Evidence from the China BAPE Study. Environ Health Perspect. 2023;131(4):47009.
36 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.