General Information of Drug Transporter (DT)
DT ID DTD0077 Transporter Info
Gene Name SLC10A5
Transporter Name Sodium/bile acid cotransporter 5
Gene ID
347051
UniProt ID
Q5PT55
Exogenous factors (drugs, dietary constituents, etc.) Modulation of This DT (EGM)

Chemical Compound

  DT Modulation1

Cisplatin co-treated with jinfukang results in decreased expression of SLC10A5 mRNA [1]

Regulation Mechanism

Transcription Factor Info

  DT Modulation1

Benzo(a)pyrene results in decreased methylation of SLC10A5 promoter [13]

Regulation Mechanism

Transcription Factor Info

  2-palmitoylglycerol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

2-palmitoylglycerol results in increased expression of SLC10A5 mRNA [8]

Regulation Mechanism

Transcription Factor Info

  abrine

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

abrine results in decreased expression of SLC10A5 mRNA [9]

Regulation Mechanism

Transcription Factor Info

  aristolochic acid I

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

aristolochic acid I results in increased expression of SLC10A5 mRNA [11]

Regulation Mechanism

Transcription Factor Info

  beta-lapachone

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

beta-lapachone results in decreased expression of SLC10A5 mRNA [14]

Regulation Mechanism

Transcription Factor Info

  methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

methyleugenol results in decreased expression of SLC10A5 mRNA [5]

Regulation Mechanism

Transcription Factor Info

  NVP-BKM120

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sotorasib co-treated with trametinib co-treated with NVP-BKM120 results in increased expression of SLC10A5 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Okadaic Acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Okadaic Acid results in decreased expression of SLC10A5 mRNA [17]

Regulation Mechanism

Transcription Factor Info

  pinostrobin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

pinostrobin results in increased phosphorylation of SLC10A5 protein [19]

Regulation Mechanism

Transcription Factor Info

  sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sodium arsenite results in decreased expression of SLC10A5 mRNA [7]

Regulation Mechanism

Transcription Factor Info

  sotorasib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sotorasib co-treated with trametinib co-treated with NVP-BKM120 results in increased expression of SLC10A5 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  Tetrachlorodibenzodioxin

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Endosulfan co-treated with Tetrachlorodibenzodioxin results in decreased expression of SLC10A5 mRNA [15]

Regulation Mechanism

Transcription Factor Info

  trametinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

sotorasib co-treated with trametinib co-treated with NVP-BKM120 results in increased expression of SLC10A5 mRNA [16]

Regulation Mechanism

Transcription Factor Info

  tris(2-butoxyethyl) phosphate

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

tris(2-butoxyethyl) phosphate affects the expression of SLC10A5 mRNA [20]

Regulation Mechanism

Transcription Factor Info

  Vanadates

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Vanadates results in decreased expression of SLC10A5 mRNA [21]

Regulation Mechanism

Transcription Factor Info

Mycotoxins

  Aflatoxin B1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Aflatoxin B1 results in decreased methylation of SLC10A5 gene [10]

Regulation Mechanism

Transcription Factor Info

Health and Environmental Toxicant

  Endosulfan

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Endosulfan co-treated with Tetrachlorodibenzodioxin results in decreased expression of SLC10A5 mRNA [15]

Regulation Mechanism

Transcription Factor Info

Nanoparticle

  perfluoro-n-nonanoic acid

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

perfluoro-n-nonanoic acid results in decreased expression of SLC10A5 mRNA [18]

Regulation Mechanism

Transcription Factor Info

Approved Drug

  Cisplatin

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Cisplatin inhibits the expression of SLC10A5 [1]

  Sunitinib

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sunitinib increases the expression of SLC10A5 [2]

Drug in Phase 1 Trial

  Sodium arsenite

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Sodium arsenite inhibits the expression of SLC10A5 [7]

Drug in Preclinical Test

  (+)-JQ1

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

(+)-JQ1 inhibits the expression of SLC10A5 [3]

Natural Product

  Particulate Matter

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Particulate Matter increases the expression of SLC10A5 [4]

  Methyleugenol

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Methyleugenol inhibits the expression of SLC10A5 [5]

  Tobacco Smoke Pollution

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Tobacco Smoke Pollution inhibits the expression of SLC10A5 [6]

Traditional Medicine

  Jinfukang

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Jinfukang inhibits the expression of SLC10A5 [1]

Carcinogen

  Benzo(a)pyrene

           2 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Benzo(a)pyrene inhibits the expression of SLC10A5 [5]

  Arsenic

           1 DT Activity Modulations Related to This Exogenous Factor Click to Show/Hide the Full List

  DT Modulation1

Arsenic results in increased methylation of SLC10A5 promoter [12]

Regulation Mechanism

Transcription Factor Info
References
1 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
2 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761.
3 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
4 Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles. BMC Genomics. 2018 Apr 27;19(1):302.
5 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297.
6 Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 2021 May;95(5):1739-1761.
7 Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol. 2021 Jul;95(7):2351-2365.
8 Direct effect of 2-palmitoyl glycerol on promotion of gamma aminobutyric acid synthesis in normal human fetal-derived astrocytes. FEBS Open Bio. 2023;13(7):1320-1332.
9 Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett. 2019;312:1-10.
10 Aflatoxin B1 induces persistent epigenomic effects in primary human hepatocytes associated with hepatocellular carcinoma. Toxicology. 2016 Mar 28;350-352:31-9.
11 Integration of transcriptomic, proteomic and metabolomic data to reveal the biological mechanisms of AAI injury in renal epithelial cells. Toxicol In Vitro. 2021;70:105054.
12 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011;24(2):165-7.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017;8(1):1369-1391.
14 Lapachone induces ferroptosis of colorectal cancer cells via NCOA4-mediated ferritinophagy by activating JNK pathway. Chem Biol Interact. 2024;389:110866.
15 Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie. 2015 Sep;116:79-91.
16 Inhibition of KRAS, MEK and PI3K Demonstrate Synergistic Anti-Tumor Effects in Pancreatic Ductal Adenocarcinoma Cell Lines. Cancers (Basel). 2022;14(18).
17 A multi-omics approach to elucidate okadaic acid-induced changes in human HepaRG hepatocarcinoma cells. Arch Toxicol. 2024;98(9):2919-2935.
18 Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells. Arch Toxicol. 2020 Sep;94(9):3137-3155.
19 Pinostrobin induces acute leukemia cell apoptosis via the regulation of miR-410-5p and SFRP5. Life Sci. 2023;325:121739.
20 Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro. 2018;46:178-188.
21 Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 2012 Aug;4(8):784-93.

If you find any error in data or bug in web service, please kindly report it to Dr. Li and Dr. Fu.