
Strategy for Identifying a Robust Metabolomic Signature Reveals
the Altered Lipid Metabolism in Pituitary Adenoma
Jing Tang,# Minjie Mou,# Xin Zheng,# Jin Yan, Ziqi Pan, Jinsong Zhang, Bo Li, Qingxia Yang,
Yunxia Wang, Ying Zhang, Jianqing Gao, Song Li,* Hui Yang,* and Feng Zhu*

Cite This: Anal. Chem. 2024, 96, 4745−4755 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Despite the well-established connection between
systematic metabolic abnormalities and the pathophysiology of
pituitary adenoma (PA), current metabolomic studies have
reported an extremely limited number of metabolites associated
with PA. Moreover, there was very little consistency in the
identified metabolite signatures, resulting in a lack of robust
metabolic biomarkers for the diagnosis and treatment of PA.
Herein, we performed a global untargeted plasma metabolomic
profiling on PA and identified a highly robust metabolomic
signature based on a strategy. Specifically, this strategy is unique in
(1) integrating repeated random sampling and a consensus
evaluation-based feature selection algorithm and (2) evaluating
the consistency of metabolomic signatures among different sample groups. This strategy demonstrated superior robustness and
stronger discriminative ability compared with that of other feature selection methods including Student’s t-test, partial least-squares-
discriminant analysis, support vector machine recursive feature elimination, and random forest recursive feature elimination. More
importantly, a highly robust metabolomic signature comprising 45 PA-specific differential metabolites was identified. Moreover,
metabolite set enrichment analysis of these potential metabolic biomarkers revealed altered lipid metabolism in PA. In conclusion,
our findings contribute to a better understanding of the metabolic changes in PA and may have implications for the development of
diagnostic and therapeutic approaches targeting lipid metabolism in PA. We believe that the proposed strategy serves as a valuable
tool for screening robust, discriminating metabolic features in the field of metabolomics.

■ INTRODUCTION
Pituitary adenoma (PA) is one of the most common
intracranial and neuroendocrine neoplasms with high preva-
lence,1−4 which accounts for a large proportion of intracranial
tumors.1,5,6 Due to its aggressive infiltration into the
surrounding brain tissue and its severe complications (such
as Cushing’s disease, hyperprolactinemia, and acromegaly),7−9

it is essential to unveil the molecular mechanisms underlying
the development of PA,10 which can effectively facilitate the
discovery of novel therapeutics.10 Systematic metabolic
abnormalities have been reported to closely correlate with
the development, progression, and prognosis of PA,11,12 which
has made the identification of differential metabolites between
PA and healthy individuals a popular field.11

Currently, due to the inaccessibility of the pituitary gland for
biopsy and the lack of relevant cell lines and animal models,
the understanding of metabolic abnormalities during the
pathogenesis of PA remains an extremely challenging
problem.11,13,14 Several publications have in-depth studied
the systemic metabolic abnormalities in the pathogenesis of PA
using high-throughput metabolomics techniques.10,14−16 Spe-
cifically, Oklu et al. investigated the cellular secretions of

ACTH using plasma derived from bilateral inferior petrosal
sinus sampling (BIPSS) blood and found that amino acid
metabolism appeared to be primarily altered in PA.14 Ijare et
al. used NMR spectrometry to assess the metabolomic profile
of PA and identified that the aspartate and glutamate
metabolism was affected in PA.17 These studies provided
preliminary insights into the pathogenesis of PA.
However, among these previous publications, the number of

differential metabolites associated with PA was extremely
limited, which made it hard to comprehensively study systemic
metabolic abnormalities.14 In addition, the most commonly
used methods for screening differential metabolites are partial
least-squares-discriminant analysis (PLS-DA), Student’s t-test,
and linear discriminant analysis (LDA).18,19 However, these
statistical methods may have limitations when applied to the
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current metabolomic data set.20 Nonlinear associations were
reported among metabolites.21 Support vector machine-
recursive feature elimination (SVM-RFE) has been introduced
as a valuable approach for biomarker identification in
metabolomic data, specifically designed to tackle issues such
as noisy training examples, a limited number of biological
replicates,22 and nonlinearity among metabolites.21 Moreover,
increasing evidence has demonstrated that there is very little
consistency in the identified biomarkers among published
metabolomic studies.23−27 This inconsistency among metab-
olomic signatures from different studies was attributed to
several factors,25 including (i) the inconsistency of sam-
ples,28,29 (ii) the differences of analytical platform,23 (iii) the
insufficiency of sample sizes,30 and (iv) the subtle variation of
the statistical methods employed to identify differential
features.25,31 Therefore, it is essential to develop a novel
strategy to discover the highly robust metabolomic signatures
of PA and to facilitate the understanding of molecular
mechanisms underlying PA pathogenesis based on the robust
metabolomic signatures.24,25,32

Herein, global plasma metabolomic profiling of PA was
performed, and a novel robust identification strategy for
identifying the robust metabolomic signature was developed.
Specifically, this novel strategy integrates repeated random
sampling and a consensus evaluation-based feature selection
algorithm and can evaluate the consistency of metabolomic
signatures among different sample groups. A systematic
assessment from multiple perspectives was conducted to
demonstrate the performance of the proposed strategy. The
evaluation of spike-in metabolomics data revealed that the
proposed algorithm successfully identified a significant number

of true positive metabolic features. In comparison with other
feature selection methods, the proposed strategy exhibited
superior robustness in the selection of metabolite features and
demonstrated enhanced predictive ability on the independent
test data. Based on this novel strategy, 45 highly robust
differential metabolites (RDMs) distinguishing PA from non-
PA samples were identified, and the significant plasma
metabolic alteration between PA and non-PA patients was
clarified. Among all of the identified metabolites, most were
reported to be associated with PA for the first time. Moreover,
the results of metabolite set enrichment analysis (MSEA)
revealed that dysregulation of lipid metabolism was a key factor
in the pathogenesis of PA. In conclusion, our study represents
the first comprehensive untargeted metabolomic analysis of
PA, providing novel insights into robust metabolic biomarkers
for PA diagnosis and treatment. The findings highlight the
crucial role of lipid metabolism in PA pathogenesis.
Furthermore, we assert that the proposed strategy serves as a
valuable tool for screening robust, discriminating metabolic
features in the metabolomics field.

■ MATERIALS AND METHODS
Human Subjects. This study enrolled 113 patients with

brain tumors with informed consent, and the study protocol
was approved by Xinqiao Hospitals, Army Medical University
of China. The diagnoses were confirmed via histopathological
analyses of surgical specimens obtained from the patients.
These diagnosed brain tumors were composed of PAs (n =
78), craniopharyngioma (n = 10), Rathke cleft cysts (n = 11),
meningiomas (n = 5), gliomas (n = 2), arachnoid cysts (n = 3),
and intracranial germinoma (n = 4) according to the 2004

Figure 1. Workflow of the newly constructed robust identification strategy for identifying PA-specific RDMs.
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WHO Classification of Tumors.33 Healthy volunteers (n =
175) with normal values on standard clinical tests of plasma
and urine and without chronic medication or major illness
were enrolled in the control group according to a physician’s
assessment. Nontargeted plasma metabolomic data from 288
subjects were acquired by liquid chromatography coupled to
tandem mass spectrometry (LC−MS/MS). All details on
sample preparation and data processing are provided in
Supporting Information Methods.

Identification of a Robust Metabolomic Signature
Using the Novel Strategy. The newly constructed robust
identification strategy is a multivariate wrapper approach that
integrates repeated random sampling and a consensus
evaluation-based feature selection algorithm. It can minimize
the error elimination of metabolic features, thus enabling the
identification of robust metabolic features (RMFs).34 The
workflow of this strategy is illustrated in Figure 1. First, all 288
samples collected from the Xinqiao hospital were randomly
divided into a discovery set and an independent test set. The
discovery set contained 66 PA samples and 195 non-PA
samples, and the independent test set contained 12 PA and 15
non-PA samples. Second, the discovery set was divided into a
training set and a validation set by random sampling, where
half of the samples were in the training set and the remaining
samples were in the validation set. This random sampling
process was repeated 2000 times, producing 2000 training-
validation sets by pairing the training set with the validation
set. The 2000 training-validation sets were then randomly
divided into 20 groups, each containing 100 different training-

validation sets. For each sample group, 100 training-validation
sets were used to generate a metabolomic signature based on a
consensus evaluation-based feature selection algorithm. This
algorithm consists of two parts, namely, SVM-RFE35 and
feature elimination based on ranking consensus evaluation
(FERCE), the latter of which is a novel algorithm proposed in
this study. SVM-RFE has a successful application in the
biomarker identification of metabolomic data, particularly in
addressing challenges such as noisy training examples, a low
number of biological replicates,22 and nonlinearity among
metabolites.21

Specifically, SVM-RFE built an SVM classifier based on the
training set and evaluated the classification performance on the
validation set. Meanwhile, the model assigned each feature a
weight, which reflects the importance of the feature. According
to the importance of features, the low-ranking features were
removed, and the SVM was then retrained and evaluated using
the remaining features. This process was repeated until the
performance on the validation set began to degrade.36 As a
result, the SVM-RFE algorithm was used to generate 100
different feature ranking lists for 100 training-validation sets.
Subsequently, in order to obtain a robust metabolomic
signature from each group, these 100 feature ranking lists
were further processed by the novel FERCE algorithm. The
workflow of the FERCE algorithm is shown in Figure 2. For
example, in sample group Gn, the procedure of the FERCE
algorithm processing 100 feature ranking lists generated by
SVM-RFE is as follows. (1) The features ranking in the bottom
of the feature ranking list Li (10 to 40% depending on the

Figure 2. Schematic diagram of the novel FERCE algorithm. The FERCE algorithm conducts feature elimination based on ranking consensus
evaluation. In sample group Gn, 100 feature ranking lists were generated by SVM-RFE, which were further processed by the FERCE algorithm.
First, the features ranking in the bottom of the feature ranking list Li (10 to 40% depending on the number of features in the feature ranking list)
were put into a low-ranking set Ri. Second, for features in Ri, those ranking in the bottom 50% of Li−1 were put into an initial elimination set Ei to
guarantee that they consistently ranked low among different feature ranking lists. The above two steps produced 100 different initial elimination
sets. Third, features appearing more than 90 times among the 100 initial elimination sets were further put into the final elimination set Fn. All the kn
features in Fn were eliminated from the original feature set, and the remaining features formed the metabolomic signature of sample group Gn. A
detailed description of each variable is provided in Table S1.
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number of features in the feature ranking list) were put into a
low-ranking set Ri. (2) For features in Ri, those ranking in the
bottom 50% of Li−1 were put into an initial elimination set Ei
to guarantee that they consistently ranked low among different
feature ranking lists. The above two steps produced 100
different initial elimination sets. (3) Features that appeared
more than 90 times among the 100 initial elimination sets were
further put into the final elimination set Fn. (4) All the kn
features in Fn were eliminated from the original feature set,
which contained mn features, and the remaining mn−kn features
formed the metabolomic signature of sample group Gn. Finally,
20 metabolomic signatures containing varying numbers of
differential metabolic features (DMFs) were identified. The
intersection of 20 metabolomic signatures containing various
RMFs was considered the robust metabolomic signature of PA
and was selected as a potential metabolic biomarker for the
diagnosis and treatment of PA. In this procedure, by removing
these noisy features, we aim to retain informative features and
minimize their impact on the model. Furthermore, eliminating
these noisy features can also result in saving computational
power.

Assessment on the Robustness of DMFs. In this study,
a systematic assessment was performed to evaluate the
robustness of the identified DMFs.37 Metabolic data
(discovery data) are first divided into 20 subdata sets using
random sampling (20 times, half sample size for PA samples
and half sample size for control samples, respectively). The
random samples are then selected each time for PA samples
and control samples and then combined for constructing 20
subdata sets. After the subgroup generation, the new approach
for identifying the differential metabolic markers is applied to
each subdata set. Based on the 20 marker sets identified from

these 20 subdata sets, a powerful measure consistency score
(CS)37−39 is finally used to quantitatively evaluate the level of
consistency among the 20 sets of identified metabolic markers.
The higher CS represents more robust results in metabolic
marker identification for that given data set. The CS is
calculated using the selected differential metabolites in each
subdata set based on the equation as follows

= ×
=

nCS 2
i

C

S I

i
S

2

2

i (1)

where C indicates the total number of subdata sets and is equal
to 20 in this study, Ii refers to a set of DMFs containing the
intersections of any i subdata sets, and nS represents the
number of DMFs in the intersection S. In general, metabolic
features selected by the approach are considered more robust
when they yield more shared metabolic markers from more
subdata sets, resulting in a higher CS.

Assessment on the Predictive Accuracy of Robust
Metabolic Features. The predictive accuracy of selected
features can reflect the effectiveness of the feature selection
strategy.40 In this study, the classification performance of
RMFs identified from the discovery set was evaluated by using
the SVM classification model to predict the PA outcomes on
an independent test set.41,42 The predictive performance was
assessed using the accuracy metric (ACC),43 which indicated
the ratio of samples successfully predicted within the
independent test set and was calculated by the following
formula

= +
+ + +

×ACC
TP TN

TP FP TN FN
100%

(2)

Figure 3. QC assessment on untargeted metabolomics data. (A) Visualization of samples in the ESI+ mode using an MDS plot. (B) Visualization of
samples in the ESI− mode using an MDS plot. QC samples are shown as green dots. The PA and non-PA samples are shown as black dots. (C)
Distribution of CVs in the ESI+ mode. (D) Distribution of CVs in the ESI− mode.
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where TP, FP, TN, and FN represent the number of true
positives, false positives, true negatives, and false negatives,
respectively.

Biological Pathway Enrichment Analysis of RDMs.
MSEA44 on RDMs was conducted to identify biological
pathways of significant enrichment.45 In this study, Kyoto
Encyclopedia of Genes and Genomes (KEGG)44 and
MetaboAnalyst 4.046 (https://www.metaboanalyst.ca/) were
utilized to clarify relevant metabolic pathways. The list of
RDMs identified by our novel strategy was used as input for
MSEA. Various biological pathways along with their P-values
were identified by MSEA. The Holm-Bonferroni method was
applied to correct P-values, and the Holm-adjusted P-values
were obtained.47 Biological pathways with Holm-adjusted P-
values less than 0.05 were defined as significantly enriched
pathways and were considered to be closely associated with the
development of PA.48−50

■ RESULTS AND DISCUSSION
QC Assessment of the Untargeted Metabolomics

Data. The untargeted plasma metabolomics data acquisition
was performed following the recommendations of the
metabolomics quality assurance and quality control consortium
(mQACC).51 All the samples were divided into a discovery set
and an independent test set. 261 participants, comprising 66
PA and 195 non-PA samples, constituted the discovery data
set, and the independent test set was composed of 12 PA and
15 non-PA samples. The abundances of plasma small
molecules (<1500 Da) in the discovery set and independent
test set were measured by UPLC-ESI-QTOF/MS. After peak
detection, alignment, peak area extraction, quality assurance,

and missing values filtering,52 a total of 3242 feature ions/
signals were detected in the ESI+ mode and 1657 signals were
detected in the ESI− mode. To handle missing values, we
applied a method where the missing peaks were filled with half
of the minimum peak area. The data, after the missing values
were imputationed, were then used for subsequent differential
metabolite analysis. The details on data preprocessing are
demonstrated in Supporting Information Methods. These
signals represented unique pairs of m/z and retention times;
however, they did not correspond to specific metabolites. This
is because the fragmentation process and adduct formation in
MS can result in multiple signals representing a single
metabolite. The overall workflow of this study is illustrated
in Figure 1.
Quality control (QC) samples were also used to assess the

quality and reproducibility of the measurement.53,54 The
multidimensional scaling (MDS) plot was applied to reduce
the dimensionality of all samples and visualize the differences.
The coefficients of variation (CVs) of features were utilized to
assess the measurement variability based on QC samples. First,
the MDS using Pearson’s correlation coefficient as the distance
metric was applied to reduce the dimensionality of all
samples.53 As shown in Figure 3A,B, black dots represented
plasma samples, and green dots represented QC samples. In
both modes, it was evident that QC samples were clustered
together in the reduced-dimensional space, indicating QC
variability is less than biological variability. Second, we assessed
measurement variability using the CVs from QC samples. The
CVs were calculated for all features, and the quality of
measurement was quantitatively assessed by comparing the
distributions of CVs between QC samples and plasma samples.
As illustrated in Figure 3C,D, each point represented a specific

Figure 4. Number of DMFs identified simultaneously in N (N = 1−20) groups. (A) Number of DMFs identified simultaneously in N (N = 1−20)
groups in the ESI+ mode. 395 DMFs were simultaneously discovered in all sample groups in the ESI+ mode, and only 27 DMFs were identified in
a single sample group. (B) Number of DMFs identified simultaneously in N (N = 1−20) groups in the ESI− mode. 420 DMFs were simultaneously
discovered in all sample groups in the ESI− mode, and only 19 DMFs were identified in a single sample group.
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feature. The average CVs for all features within QC samples
were 15.8 and 8.3% in the ESI+ mode and ESI− mode,
respectively. These results demonstrated that most features
showed acceptable repeatability with CVs <30% in QC
samples.55,56 It is noteworthy that the average CVs of QC
samples were significantly lower than those of PA and non-PA
(all p-values < 0.05) based on Student’s t-test.57 These
observations indicate high measurement reproducibility.

Robustness of DMFs Identified by the Novel
Strategy. First, we assess the algorithm’s ability to select
true positive metabolic features using the metabolomic data set
MTBLS59.58 This benchmark data set consists of the
metabolic spectra of apple extracts detected by UPLC-MS
(positive ionization mode) and contains 1632 metabolic
features (22 true positive metabolic features). The data set
includes 10 control samples and 3 spiked data sets of the same
size, where spiked compounds were added in different
concentrations. As demonstrated in Table S2, for each
group, the algorithm identified 18, 15, and 14 true positive
metabolic features out of the 22 spiking-in compounds,
respectively. These results demonstrate the good performance
of our approach in accurately selecting true positive metabolic
features. In addition, to investigate the robustness of identified
PA-associated DMFs, two commonly used metrics were
employed in this study, as introduced in Materials and
Methods. Specifically, 20 metabolomic signatures containing
varying numbers of DMFs were generated from 20 sample
groups based on the novel, robust identification strategy. As

shown in Figure 4 and Tables S3 and S4, the number of DMFs
identified from 20 sample groups varied from 501 to 508 in the
ESI+ mode (Table S3) and from 501 to 510 in the ESI− mode
(Table S4). There were 395 and 420 features simultaneously
discovered in all sample groups in the ESI+ and ESI− modes,
respectively, accounting for more than 77.8% (in the ESI+
mode) and 82.4% (in the ESI− mode) of identified DMFs. In
addition, only 27 and 19 features were identified in a single
sample group in the ESI+ and ESI− modes, respectively,
accounting for less than 5.39% (in the ESI+ mode) and 3.79%
(in the ESI− mode) of identified DMFs. These results
indicated the high robustness of DMFs obtained from 20
sample groups.
Moreover, we provided a more comprehensive evaluation of

the performance on robustness of the DMFs identified by our
proposed approach. Particularly, we compared our newly
proposed algorithm with five commonly used metabolic feature
selection methods based on the CS of metabolite features
identified for the discovery set. These methods included
Student’s t-test, PLS-DA, SVM-RFE, random forest recursive
feature elimination (RF-RFE), and a consensus evaluation-
based feature selection algorithm using PLS-DA (PLSDA-
FERCE). Detailed descriptions of all five of these benchmark
methods can be found in Supporting Information Methods.
For the discovery set, the training and test sets were divided
1:1 using random seeds. The features were selected on the
training set, and the selected features were evaluated on the
CS. The comparison results for five metabolite feature

Figure 5. CS of the DMFs identified by PLS-DA, Student’s t-test, SVM-RFE, RF-RFE, PLSDA-FERCE, and our proposed strategy. (A) CS of the
DMFs identified by these methods in the ESI+ mode. (B) CS of the DMFs identified by these methods in the ESI− mode.
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selection methods including Student’s t-test, PLS-DA, SVM-
RFE, RF-RFE, and PLSDA-FERCE are shown in Figure 5. As
shown in Figure 5A, in the ESI+ mode, the CS of DMFs
identified by benchmarked methods (Student’s t-test, PLS-DA,
SVM-RFE, and RF-RFE) increased with the enlargement of
the number of selected top-ranking DMFs. Specifically, the CS
of PLS-DA increased from 1.4 × 107 to 3.6 × 107 when the
number of top-ranking DMFs increased from 100 to 400, the
CS of Student’s t-test increased from 1.5 × 107 to 3.4 × 107,
the CS of SVM-RFE increased from 2.4 × 106 to 1.7 × 107,
and the CS of RF-RFE increased from 3.9 × 106 to 2.2 × 107.
Obviously, these CSs were substantially lower than that of our
novel strategy, which was equal to 1.1 × 108. These results
indicated a great enhancement in the robustness of the DMFs
identified by our strategy. Similarly, Figure 5B illustrates that
our novel strategy exhibited stronger robustness than that of
Student’s t-test, PLS-DA, SVM-RFE, and RF-RFE for the ESI−
mode.
In current metabolomic studies, there are often nonlinear

associations between metabolite concentrations and covariates,
e.g., age, body mass index, gender, and hormone.21 Addition-
ally, there may exist nonlinear associations between PA
phenotypes and covariates.59,60 It is important to note that
the RDMs discovered by the novel method may indeed be
correlated or confounded by various factors such as diet or
medication. These factors can significantly impact the
interpretation and application of our findings. Therefore,

further studies are necessary to determine the interplay
between these metabolites and confounding factors.
Furthermore, we provided and released the source codes of

the proposed novel algorithm. All the code for the proposed
algorithm for selecting robust, discriminating metabolic
features between distinct groups could be readily downloaded
from the RMSI Web site (http:/rdblab.cn/rmsi/). The source
code was freely accessible and could be utilized by users to
analyze their own metabolomic data on local computers. The
exemplar data input/output files could be simultaneously
downloaded to assist users in understanding and applying the
source code effectively. This is particularly beneficial for
researchers or biologists without programming or mathemat-
ical backgrounds as it provides them with the necessary tools
to screen robust, discriminating metabolic features.

Predictive Accuracy of Identified Robust Metabolic
Features. The independent test set containing 27 plasma
samples was employed to validate the predictive performance
of the identified RMFs. The predictive ability of identified
RMFs was evaluated on an independent test set using the SVM
classification model. As a result, there was an overall
improvement in the predictive ability of our novel strategy
compared with that of other methods (Student’s t-test, PLS-
DA, SVM-RFE, RF-RFE, and PLSDA-FERCE). Specifically, as
shown in Figure 6A (in the ESI+ mode), for TOP100, 200,
300, and 400 features, the ACC reached its highest values for
Student’s t-test, PLS-DA, SVM-RFE, and RF-RFE, with values

Figure 6. Predictive accuracy of the DMFs identified by PLS-DA, Student’s t-test, SVM-RFE, RF-RFE, PLSDA-FERCE, and our proposed strategy.
(A) Accuracy of the DMFs identified by these methods in the ESI+ mode. (B) Accuracy of the DMFs identified by these methods in the ESI−
mode.
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of 0.704, 0.741, 0.630, and 0.704, respectively. PLSDA-FERCE
achieved an ACC of 0.704. In contrast, the DMFs identified by
our novel strategy achieved an ACC of 0.741. Similarly, as
shown in Figure 6B (in the ESI− mode), the highest ACC
values for Student’s t-test, PLS-DA, SVM-RFE, and RF-RFE
are 0.778, 0.778, 0.704, and 0.667, respectively. PLSDA-
FERCE achieved an ACC of 0.741. In contrast, the ACC of
DMFs identified by our novel strategy achieved a value of
0.815. These results indicated that the DMFs identified by the
novel strategy exhibit better predictive accuracy in distinguish-
ing PA from non-PA samples compared to those of other
methods overall, especially for SVM-RFE and RF-RFE. Figure
S1 demonstrates that the number of false positives (FP)
obtained by our novel strategy is generally lower than that of
other methods when they are applied to predict independent
test data.
Moreover, we also compared the predictive ability of the

robust metabolic features identified by the proposed method
using five machine learning classifiers based on independent
test data. These five machine learning classifiers, widely utilized
in the metabolomics field, include SVM,61 RF,62 XGBoost,63

naive Bayes (NB),64 and K-nearest neighbor (kNN).65 The
classifiers were trained using the 395 robust metabolic features
selected in the positive mode and the 420 robust metabolic
features selected in the negative mode for the discovery data
set. The performance of the classifier models was then
evaluated on the basis of the independent test data. The
performance comparison results for these five classifiers are
listed in Table 1. As shown in Table 1, when applied to the
independent set, the SVM classifier yielded accuracy values of
0.74 (for POS) and 0.81 (for NEG). These results
demonstrate a good predictive capability, outperforming
other classifiers such as RF, XGBoost, NB, and kNN.

Biological Relevance of PA-Specific RDMs. The newly
constructed strategy was developed to identify PA-specific
RDMs. All the RDMs were annotated based on the
commercial databases MetDDA and LipDDA (Supporting
Information Methods). As shown in Table S5, a robust
signature containing 45 RDMs was identified. In sum, these 45
significantly differential plasma metabolites included different
kinds of amino acids, steroids, sphingolipids, bile acids,
nucleotides, fatty acids, lipoglycans, and hydroxy acids. As
reported previously, bile acids (such as lithocholic acid and
cholic acid) promoted the production of reactive oxygen
species and thus caused DNA damage in cancer.66 Moreover,
some RDMs discovered in this study played key roles in the
development of PA. Specifically, 18 metabolites have been
reported to be associated with the pathogenesis of PA in
previous studies, including hydrocortisone,67 arachidonic
acid,68 L-citrulline,69 inosine,70,71 L-arginine,72 lipopolysacchar-
ide (LPS)73 (including LPS (18:0/0:0), LPS (18:2/0:0), LPS
(20:0/0:0), LPS (20:4/0:0), LPS (22:2/0:0), LPS (22:6/0:0),
and LPS (24:4/0:0)), trans-vaccenic acid,74 beta-hydroxybu-
tyrate,75 L-glutamate,76 caprylic acid,10,77 phosphatidylcholine
(PC) (17:1/22:6),76,78 and phosphatidylethanolamine (PE)
(18:1/0:0).10 Considering arachidonic acid, for example,
previous studies have investigated the involvement of
arachidonic acid metabolites in basal and thyrotropin-releasing
hormone-stimulated prolactin release in GH3 cells, a cloned
strain of rat pituitary tumor cells.68 It has also been reported
that arachidonic acid plays a vital role in the regulation of
adrenocorticotropin release.68 In addition, arachidonic acid can
induce the activation of PPAR-γ,79 which is highly expressed in
pituitary tumors and is an important molecular target of PA.80

The biological relevance between these identified robust
metabolites and PA was comprehensively reviewed and is
provided in Supporting Information Methods.

Robust Metabolomic Signature Reflects the Altered
Lipid Metabolism in PA. MSEA is a valuable approach for
determining the biological functions associated with the
identified differential metabolites. By conducting a secondary
analysis, MSEA enables the collective exploration of these
metabolites and enhances our understanding of their under-
lying biological mechanisms. Exploring dysregulated biological
pathways in PA is essential for comprehending the pathology
of PA. Thus, MSEA was performed to investigate the biological
pathways associated with the 45 identified RDMs. Based on
KEGG pathway mapping, as demonstrated in Table S5, the
majority of the identified metabolites were involved in lipid
metabolism, amino acid metabolism, glycan biosynthesis and
metabolism, and nucleotide metabolism. Among these bio-
logical pathways, some have been reported to be closely related
to the pathogenesis of PA. For instance, the progression of PA
is associated with alterations in amino acid metabolism.14 In
addition, the glycan biosynthesis and metabolism pathway was
found to play a vital role in the development of PA based on
transcriptomic analysis.81 Moreover, the activation of nucleo-
tide metabolism has been confirmed as a response to thyroid
hormone-stimulated cell proliferation, providing valuable
insights into the molecular mechanisms underlying PA
pathogenesis.82

In this study, MSEA further revealed the altered lipid
metabolism in PA. The results of MSEA are displayed in Table
2. A total of 12 pathways were identified as enriched, with
primary bile acid biosynthesis exhibiting the most significant
enrichment among them (Holm-adjusted P-value = 0.0047).

Table 1. Performance Comparison of Five Machine
Learning Classifiers Using the Robust Metabolic Features
Selected by the Proposed Approach in This Studya

method abbreviation
accuracy
(ACC)

false
negatives
(FN)

false
positives
(FP)

support vector
machine

SVM NEG
(0.81)

NEG (2) NEG (3)

POS
(0.74)

POS (2) POS (5)

random forest RF NEG
(0.74)

NEG (2) NEG (5)

POS
(0.67)

POS (1) POS (8)

XGBoost XGB NEG
(0.78)

NEG (2) NEG (4)

POS
(0.56)

POS (8) POS (4)

naive Bayes NB NEG
(0.74)

NEG (0) NEG (7)

POS
(0.67)

POS (1) POS (8)

K-nearest
neighbor

kNN NEG
(0.63)

NEG (7) NEG (3)

POS
(0.56)

POS (3) POS (9)

a395 features were screened from metabolomic data in the positive
ion mode and 420 features in the negative ion mode. The classifiers
were trained on the discovery data and applied to predict the
independent test set.
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There were five hits in primary bile acid biosynthesis among
the 45 identified RDMs, namely, chenodeoxycholic acid
glycine conjugate, taurochenodesoxycholic acid, glycocholic
acid, chenodeoxycholic acid, and cholic acid, as illustrated in
Figure S2. All these five metabolites were categorized as bile
acids and were involved in lipid metabolism, reflecting the
alteration of lipid metabolism in PA. Lipids serve various
crucial functions, including their involvement in cell membrane
formation, energy provision, and cell signaling transduction.
Other omics studies, such as proteomic signaling pathway
network analysis, have revealed the underlying alterations in
lipid metabolism associated with PA, which are consistent with
the findings of our study.83 Our findings provided new insights
into robust metabolic biomarkers for the diagnosis and
treatment of PA.

■ CONCLUSIONS
In this study, we performed global untargeted plasma
metabolomic profiling and identified a robust PA-specific
metabolomic signature using a novel robust identification
strategy. This novel strategy integrates repeated random
sampling and a consensus evaluation-based feature selection
algorithm and can evaluate the consistency of metabolomic
signatures obtained from different sample groups. A systematic
assessment of this novel strategy demonstrated its enhanced
robustness and better discriminative performance compared to
that of other feature selection methods including Student’s t-
test, PLS-DA, SVM-RFE, and RF-RFE. The identified robust
metabolomic signature comprised 45 metabolites discriminat-
ing PA from non-PA. Moreover, the MSEA of these
metabolites reflected the alterations in lipid metabolism in
PA. These findings can facilitate an in-depth understanding of
the molecular mechanisms underlying the pathogenesis of PA
and provide important insights for discovering diagnostic
molecules and potential drug targets for PA. We believe the
proposed strategy stands as a valuable tool for screening
robust, discriminating metabolic features within the field of
metabolomics.
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