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ABSTRACT: In the context of precision medicine, multiomics data integration provides a comprehensive understanding of
underlying biological processes and is critical for disease diagnosis and biomarker discovery. One commonly used integration
method is early integration through concatenation of multiple dimensionally reduced omics matrices due to its simplicity and ease of
implementation. However, this approach is seriously limited by information loss and lack of latent feature interaction. Herein, a
novel multiomics early integration framework (MOINER) based on information enhancement and image representation learning is
thus presented to address the challenges. MOINER employs the self-attention mechanism to capture the intrinsic correlations of
omics-features, which make it significantly outperform the existing state-of-the-art methods for multiomics data integration.
Moreover, visualizing the attention embedding and identifying potential biomarkers offer interpretable insights into the prediction
results. All source codes and model for MOINER are freely available https://github.com/idrblab/MOINER.

■ INTRODUCTION
Given the rapid progress in high-throughput biomedical
sequencing methodologies, it has become increasingly easy
to access multiple omics (multiomics) data (mRNA
expression, DNA methylation, microRNA expression, protein
expression, etc.) from national programs of genome
research,1−3 such as The Cancer Genome Atlas (TCGA)4

and the International Cancer Genome Consortium (ICGC),5

etc. While each omics data type is specific in revealing partial
biological information, their integration cultivates a more
comprehensive understanding of disease mechanisms6−10 and
facilitates the advancement of precision medicine.11−13

However, improper integration approaches may introduce
the complexity and computational cost of the problem.6,14,15

Therefore, there is an urgent demand for methodologies to
handle, standardize, and integrate heterogeneous multiomics

data into a unified compendium. Such integration aims to
capture complementary information, establishing a founda-
tional platform for subsequent analysis and learning.16−18

Recently, a variety of strategies have been developed for
unsupervised multiomics integration,19 such as iCluster,20

Similarity Network Fusion (SNF),21 Multi-Omics Factor
Analysis (MOFA),22 SubtypeGAN,23 DeepProg,24 etc. These
methods primarily address the tasks of subtype clustering and
prognostic analysis; that is, they do not require prior
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knowledge of sample phenotypes. With the availability of data
sets containing detailed sample phenotype annotations on the
rise, there is a growing interest in supervised approaches for
integrating multiomics data, enabling accurate predictions on
uncharacterized cases.25,26 So far, supervised integration
methods include: (1) early integration methods that
concatenate matrices of different omics data types, such as
RDFS,27 Stetson et al.,28 and Fu et al.,29 (2) intermediate
integration methods that map diverse omics data into a shared
space, such as MoGCN,30 and (3) late integration methods
that combine predictions from different omics data types using
ensemble learning, such as MOGONET25 and MOMA.31

Compared to other integration methods, early integration has
become the most commonly used method6,32 for the reasons
that it preserves the attributes of biometric measurements and
is easy to implement.
However, early integration encounters two primary

challenges in its application: (1) The raw high-dimensional
data generated by concatenating all omics data is intricate,
noisy, and redundant, leading to challenging learning processes
and suboptimal model performance.6,33 Existing methods27,34

often employ feature selection algorithms to reduce the
complexity of the composite matrix, which results in
information loss as certain useful information is filtered out
during the selection process.21 (2) Another challenge lies in
the fact that sequential high-dimensional multiomics vectors
can hardly reflect the intrinsic correlations of omics-features
from the representational level.35 This limitation hinders the
application of such data in advanced deep learning models,
including 2D-CNN and Vision Transformer.36,37

To address these challenges, we propose MOINER, a novel
multi-omics early integration framework based on information
enhancement and image representation learning strategies.
Specifically, all feature variables within the raw high-dimen-
sional multiomics data are designated as a global feature set
(GFS), while the feature subsets resulting from feature
selection are designated as a local feature set (LFS). MOINER
constructs a sample similarity network utilizing the GFS,
wherein features within the LFS undergo information
enhancement through neighborhood aggregation and message
passing in this sample similarity network. Subsequently, the
LFS is mapped to a regular 2D-map (omicsMap) by calculating
the feature cosine similarity. Finally, an ensemble model of
Vision Transformer (ViT) with different number of encoders
(En-ViT) is employed for capturing intrinsic correlations of
omics-variables in the omicsMap and conducting accurate label
prediction for novel cases. To validate MOINER’s effectiveness
and adaptability, we performed a comprehensive performance
comparison with other methods for integrating multiomics
data on four biomedical categorization tasks: Alzheimer’s

disease (AD) patient categorization, breast carcinoma (BRCA)
subtype categorization, prostate cancer (PRAD) grading
categorization, and COVID-19 patient categorization. Our
results indicate the superiority of MOINER over other state-of-
the-art (SOTA) approaches while providing interpretable
insights into prediction results through latent visualizing and
biomarker discovery.

■ MATERIALS AND METHODS
Data Sets Collection. The superiority of MOINER was

substantiated on four distinct biomedical classification tasks:
PRAD for tumor grade classification in prostate cancer,
ROSMAP for AD patients vs normal control, BRCA for breast
invasive carcinoma PAM50 subtype classification, and COVID-
19 for corona virus disease patients vs normal control.
Specifically, preprocessed data sets of ROSMAP and BRCA
were derived from a prior study,25 each encompassing mRNA
data, DNA methylation data, and miRNA data. For the PRAD
data set, preprocessed mRNA data, DNA methylation data,
miRNA data, and clinical annotation were sourced from the
GDC TCGA PRAD on Xena. Patients with both mRNA data,
DNA methylation data, and miRNA data were included. For
the COVID-19 data set, mRNA data, proteins data, lipids data,
and metabolites data were retrieved from MassIVE Summary
(ID: MSV000085703). This data set was part of a cohort study
conducted by Overmyer et al.38 and encompasses 128 patients
with and without a COVID-19 diagnosis. It facilitated a
thorough and systematic analysis of blood samples from
individuals affected by COVID-19. Table 1 provides detailed
information on the four data sets.
Data Preprocessing. Features with zero mean values or

low variances are filtered out first.39,40 Then, chi-square (χ2)
feature selection is a supervised feature selection method that
is commonly used in the feild of statistics and biomedical
science. Specifically, it assesses the correlation between the
feature and the real label by a chi-square test and then
determines whether to select it. In order to make the selected
features match the 2D grid map, which hold the same length of
width and height, the number of features of each omics will be
computed before feature selection. Similar to the study by
Wang et al.,25 the ROSMAP data set used 200 mRNA, 200
meth, and 200 miRNA, respectively, while the BRCA, PRAD,
and COVID-19 data sets used 1000 mRNA, 1000 meth, and
500 miRNA, respectively. Finally, each feature is scaled to [0,
1] through linear transformations by using the sklearn package.
MOINER Construction. MOINER is proposed for

multiomics integration and classification. This framework is
composed of three main modules: (1) information enhance-
ment module for reducing information loss of omics-features
after feature selection, (2) image representation module for

Table 1. Summary of Datasetsa

Data set Categories Types of Multiomics Data

Binary-class PRAD4 Early stage: 319, Late stage: 206 mRNA: 60,483, meth: 22,185, miRNA: 1880
ROSMAP25 NC: 169, AD: 182 mRNA: 55,889, meth: 23,788, miRNA: 309
COVID-1938 COVID: 102, Non-COVID: 26 lipidomics: 3357, metabolomics: 150, protein: 517,

mRNA: 13,263
Multiclass BRCA25 Normal-like: 115, Basal-like: 131, HER2-enriched: 46, Luminal A: 436,

Luminal B: 147
mRNA: 20,531, meth: 20,106, miRNA: 503

aThe ROSMAP dataset is for the classification of Alzheimer’s disease (AD) patients and normal control (NC). The PRAD dataset is for stage
classification in prostate cancer (PRAD). The COVID-19 dataset is for the classification of COVID patients and non-COVID patients. The LUSC
dataset is for stage classification in lung squamous cell carcinoma (LUSC). The BRCA dataset is for breast invasive carcinoma (BRCA) subtype
classification with normal-like, basal-like, human epidermal growth factor receptor 2 (HER2)-enriched, Luminal A, and Luminal B subtypes.
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capturing intrinsic correlations between omics-features, and
(3) classification module for performing sample classification
tasks.

Module 1: Information Enhancement Module. Informa-
tion enhancement is performed through neighborhood
aggregation and message passing in the sample similarity
network (SSN). This process can be abstractly understood as
updating data using a single-layer Graph Neural Network, with
detailed explanations provided in the Supporting Information
Figure S2. SNF algorithm21 was utilized to build individual
sample networks for each accessible omics, followed by their
efficient fusion into a unified network (SSN). This integrated
network encapsulates the complete information of raw data.
Suppose that given n samples and m omics data types, for the
v-th omics type, an n × n scaled sample similarity networkW(v)

is calculated

i j
x x

W ( , ) exp
( , )v i j

i j

( )
2

,
=

i

k
jjjjjj

y

{
zzzzzz

where x is a vector represented by the v-th omics type and
ρ(xi,xj) is the Euclidean distance between sample i and sample
j. μ is a hyper-parameter that can be empirically set and εi,j is
used to eliminate the scaling problem. Then, a normalized
sample weight matrix P(v) and a K-nearest neighbors local
affinity matrix K(v) of the v-th omics type will be calculated.
The detailed can refer to the original calculation steps of the
SNF algorithm.21

In the case of there are two types of omics, the similarity
matrix for each data type will be iteratively updated as follows

P K P K

P K P K
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where Pt+1
(1) is the status matrix of the first omics type after t

iterations and Pt+1
(2) is the status matrix of the second omics

type. After t steps, the overall status matrix can be calculated as

P
P P

2
c t t( )

(1) (2)

=
+

Given a sample matrix S∈Rn×m (n samples and m features),
a new sample matrix S’ will be calculated for fusing this SSN
(P(c)) into the sample matrix S.

S P Sc( )= ×
Module 2: Image Representation Module. A sample matrix

S’∈Rn×m is generated from the information enhancement
module; therefore, each feature is represented by an n-
dimension vector f∈Rn. Then the sklearn package is applied to
calculate feature similarity network D ∈ Rm×m. The similarity
between feature i and feature j is indicated by D (i,j) as follows.

i j
f f

f f
D( , ) 1 i j

i j

=
·

Then, the UMAP or tSNE algorithm is used to reduce the
matrix D to 2D space. The omics-features in this 2D space are
further rearranged to a regular 2D-grid map using the J-V
algorithm for linear assignment (Figure S3). The J-V algorithm
optimally determines the solution by minimizing distance
between the 2D scatter and the regular grid and generates a
prelearned map reflecting the intrinsic correlations between

omics-features. Finally, the raw multiomics data is transformed
into an image representation by rearranging each feature from
different omics layers to a specific position according to this
prelearned map (OmicsMap).

Module 3: Classification Module. The combination of
image and deep learning models has made significant
advancements in the field of biomedical research.41,42 In this
study, ViT43 is used as the default model for conducting
classification tasks utilizing multiomics images. We demon-
strate that ViT achieves better performance compared to other
image classifiers. After obtaining the OmicsMap (X∈RH×W) of
multiomics image representation, it is divided into a series of
flattened patches X RN P

p
2× , where H × W = N × P2. N is

the number of patches, H and W are the shape of the
OmicsMap, and P is the shape of each patch. The patches are
flattened and mapped to D dimensions with a trainable linear
projection. Then position embedding is added to these patches
while a class token is concatenated to the first patch; that is,
the i-th 2D image is newly represented as follows.

z x E E; X E; X E; ; X E , E R ,

R

i p p p
N

pos
P D

pos

N D

class
1 2 ( )

( 1)

2
= [ ··· ] + ×

+ ×

The ViT encoder is structured with alternating layers of
Transformer Encoder (TE)

l Lz zTE( ), 1, 2, 3, ...,l l 1= =

where L is the number of TE blocks, zl−1 is the output of the (l
− 1)-th TE block. The class token zL [xclass] of the output from
the last encoder block will be transferred into an MLP Head
for the final prediction.

Y MLP z xHead( )L class
= [ ]

Ultimately, we deployed an ensemble model, En-ViT,
comprised of ViT models with 9, 10, 11, and 12 encoding
layers. This ensemble model facilitated robust and effective
class predictions for new samples through a voting approach.
Additional hyperparameters, including random state, learning
rate, and num_mlp, were set to 0, 5e-5, and 2048, respectively.
Interpretability Assessment of MOINER. The capability

of a deep learning model to identify potential biomarkers is
critical to interpreting results and comprehending the intrinsic
biology in biomedical contexts.44 In this study, the significance
of input features can be assessed through an importance score
calculated using the mask strategy and the mean squared error
(MSE). Specifically, the performance decrease after masking
the features reflects the importance of these input features.
Suppose that given a valid data set S ∈ Rn×m, sample’s label Y∈
R1×n and a trained model ViT. For the feature mi, its
importance can be computed as follows

Importance MSE(Y, ViT(S)) MSE(Y, ViT(S ))m
m

i
=

where Sm represents the masked matrix after the i-th feature is
replaced by 0 value.
Adjusted Rand index (ARI)45 is used to evaluate the

clustering performance of latent vectors, which reflects the
degree of overlap between clustering results and actual labels.
Specifically, clustering label K is generated for latent vectors
using K-means clustering, and then we calculate RI based on
actual labels
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( )
a b

nRI

2

= +

where a is defined as the count of instance pairs assigned to the
same class in C and to the same cluster in K. b is defined as the
count of instance pairs that are assigned to different classes in
C and different clusters in K. The ARI is then calculated using
the following formula.

E
E

ARI
RI (RI)

max(RI) (RI)
=

■ RESULTS AND DISCUSSION
Architecture of MOINER. Here, we propose the

MOINER, a novel multiomics early integration framework
for biomedical classification tasks and biomarker discovery
(illustrated in Figure 1). Given a preprocessed multiomics data
set, our approach initiates by utilizing SNF21 to construct
omics-specific sample similarity networks (SSNs) for each
distinct omics layer. These SSNs are subsequently iteratively
fused to formulate the ultimate fusion network. Concurrently,
a feature selection method is applied for the raw multiomics
input, effectively filtering out redundant and noisy features.
These features are further enhanced by performing neighbor-
hood aggregation and message passing in the SSN (as
illustrated in Figures 1b, S2). Then, the matrix containing
information-enhanced features is employed to construct a
feature similarity network (FSN) by calculating the pairwise
cosine similarity. FSN is projected into 2D space using the

dimensionality reduction algorism (UMAP46 or tSNE47),
which is further assigned to a regular 2D-grid map
(OmicsMap) by using the J-V algorithm.48 As a result, all
the features from different omics types will be rearranged to a
specific position according to this prelearned OmicsMap. After
image representation, the OmicsMap is split into a sequence of
flattened 2D patches and forwarded to an ensemble learning
framework (En-ViT), where ViT models use 9, 10, 11, and 12
encoding layers, respectively (as illustrated in Figure 1c). The
detailed structure of ViT is presented in Figure S1. En-ViT
effectively detects the variation in patches through a powerful
self-attention mechanism and makes robust label prediction.
MOINER Demonstrates Superior Performance Com-

pared to Established Supervised Multiomics Integra-
tion Methods across Diverse Classification Tasks. The
classification performance of MOINER was compared with
four SOTA supervised multiomics integration (SMI) methods
and four traditional supervised machine learning (TML)
methods: (1) MOGONET.25 MOGONET employs a graph
convolutional network (GCN) and a view correlation
discovery network (VCDN) to investigate correlations across
omics in the label space, facilitating efficient multiomics
integration. (2) MoGCN.30 MoGCN is an SMI method based
on auto encoder and GCN. (3) RDFS.27 RDFS is an SMI
model that uses RF and deep neural network (DNN). (4)
MOMA.31 MOMA is a multiomics integration algorithm
employing attention learning, demonstrating superior perform-
ance in categorizing phenotypes related to diseases. (5) K-
nearest neighbor (KNN). (6) Random forest (RF). (7)
Support vector machine (SVM). (8) Extreme gradient

Figure 1. Overview of the MOINER. (a) Input processing during the application phase: MOINER necessitates that each sample possesses
multiomics features concurrently. Dimensionality reduction is achieved through the application of feature selection to each omics data type. A
single matrix is generated by concatenating all omics data. (b) MOINER employs neighborhood aggregation and message passing in a sample
similarity network to minimize information loss. SNF constructs networks of patients for each omics type and then efficiently fuses these into a
fused network. This fused network incorporates all features of a given input and provides a comprehensive representation of a patient cohort. The
value of each feature is recalculated based on the weights in the fused network. (c) Image representation learning: A feature similarity network is
constructed using cosine similarity in the concatenated multiomics matrix and projected into 2D-space. Each feature is then rearranged to a regular
image using the J-V algorithm. In En-ViT learning, an image is divided into a sequence of flattened 2D patches and serves as input to multiple ViT
models. The labels generated by these models are integrated through a voting mechanism to produce the final label prediction.
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boosting (XGBoost). The details of these methods were listed
in Table 2. To ensure comparability, MOGONET, MoGCN,
RDFS, and MOMA underwent retraining utilizing multiomics
data sets, as per the input formats specified in the original
literature. KNN, RF, SVM, and XGBoost were trained with the
concatenated matrix of the multiomics data. We used the
above methods to perform stratified 5-fold cross validation
(CV) on four data sets (ROSMAP, BRCA, PRAD, and
COVID-19). The average accuracy (ACC), F1-score, and
Matthews correlation coefficient (MCC) of 5-fold CV were
used as the evaluation metrics for binary classification, while
ACC, F1_weight, and F1_macro were used for multiclass
classification. The subsequent findings highlight the superiority
of the proposed MOINER when compared to alternative
methods for supervised integration of multiomics data,
particularly in terms of “effectiveness and robustness” and
“extensibility and practicability”.

The Effectiveness and Robustness of MOINER. As
illustrated in Figure 2 and Supporting Information Tables
S1, S2, and S3, MOINER demonstrated superior performance

across all metrics in three multiomics data sets. Specifically, the
ACC values of MOINER were 0.8405, 0.8674, and 0.9219 for
ROSMAP, BRCA, and PRAD data sets, respectively,
surpassing all other supervised integration methods. Among
the SMI methods, there was no consistent superiority of one
method over others. For instance, MORONET displayed
better performance on ROSMAP and PRAD while MoGCN
performed better on BRCA compared with other integration
methods. In the binary classification tasks (ROSMAP and
PRAD), MOINER gets 4.86% and 10.24% higher in the F1
metric, respectively, compared with MORONET. In the
multiclass classification task (BRCA), MOINER was 4.99%
and 5.81% higher than MoGCN in F1_weighted and
F1_macro, respectively. The results indicated the superior
robustness of MOINER across multiple biomedical classi-
fication tasks. It was noteworthy that both methods
(MOGONET and MoGCN) were grounded on GCN,
which suggested that integration methods utilizing neighbor-
hood aggregation and message passing could more effectively
glean insights from multiomics data compared to feedforward

Table 2. Summary of Comparison of Our Work with Other State-of-the-Art Multi-Omics Integration Methods

Model Name Method Category Code availability Reference

MoGCN Graph convolutional networks Supervised https://github.com/Lifoof/MoGCN Li et al. (2022)30

MOGONET Graph convolutional networks Supervised https://github.com/txWang/MOGONET Wang et al. (2021)25

RDFS Feedforward neural networks Supervised https://github.com/huyy96/RDFS Hu et al. (2022)27

MOMA Feedforward neural networks Supervised https://github.com/dmcb-gist/MOMA Moon et al. (2022)31

MOFA Matrix factorization Unsupervised https://github.com/bioFAM/MOFA Argelaguet et al. (2018)22

SNF Network fusion Unsupervised https://github.com/maxconway/SNFtool Wang et al. (2014)21

SubtypeGAN Generative Adversarial Network Unsupervised https://github.com/haiyang1986/Subtype-GAN Yang et al. (2021)23

Figure 2. Performance comparison of multiomics integration methods by 5-fold cross-validation. (a) Results of the ROSMAP data set. (b)
Results of the PRAD data set. (c) Results of the BRCA data set. ACC, F1, MCC for binary classification. ACC, F1-weighted, F1-macro for
multiclass classification. Box plots show the median (center lines), interquartile range (hinges), and 1.5-times the interquartile range (whiskers),
and black dots represent outliers. ACC: accuracy, MCC: Matthews correlation coefficient.
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neural networks (RDFS and MOMA). Interestingly, the SSN
module in MOINER could function as the GCN for
neighborhood aggregation and message passing (Figure S2),
thus improving the performance of MOINER. MOMA
exhibited suboptimal performance compared to other SMI
methods on two of three data sets (PRAD and BRCA). This
result might be attributed to the fact that MOMA utilizes raw
high-dimensional multiomics data as model input, which
contains much noise. Compared to the most effective among
the four TML methods on three data sets, MOINER gets
19.53%, 27.9% higher in MCC on ROSMAP and PRAD,
respectively, and 6.5% higher in F1_macro on BRCA. These
TML methods, trained using the concatenated multiomics data
set, are associated with the early integration approach, which
inherently falls short of fully leveraging the potential of
multiomics data. This observation serves to underscore the
effectiveness and robustness of our multiomics integration
strategy with information enhancement and image representa-
tion learning.

The extensibility and Practicability of MOINER. The
COVID-19 data set is a binary classification task with four
types of multiomics data. As shown in Table S4, MOINER
(0.9840), MOGONET (0.9840), and RDFS (0.9600)
achieved the comparable performance in ACC on COVID-
19 data set. However, it was worth noting that all the four SMI
methods were initially developed for dealing with multiomics
data containing three or fewer omics types. MOMA and
MoGCN, in particular, were difficult to apply to the COVID-
19 data set due to their poor extensibility. Therefore, we
focused on comparing the proposed MOINER with
MOGONET and RDFS on the COVID-19 data set. The
source codes of MOGONET and RDFS were manually

modified to cope with the COVID-19 data set. In contrast,
MOINER stands out as an end-to-end integrated framework. It
simplifies the user experience by necessitating only the input of
multiomics data without the need for source code
modification, and it exhibits flexibility by not imposing
restrictions on the number of multiomics data types. In
conclusion, MOINER excels in both extensibility and
practicality, offering the ability to seamlessly perform
multiomics data integration and various classification tasks
automatically.
MOINER Demonstrates Superior Performance Com-

pared to Established Unsupervised Multiomics Inte-
gration Methods across Diverse Classification Tasks.
MOINER was also compared with three unsupervised
multiomics integration (UMI) methods: (1) MOFA.22

MOFA, as a Bayesian model, facilitates the unsupervised
integration of multiomics data. It deduces a collection of latent
factors aimed at capturing both the biological and technical
origins of variability. (2) SNF.21 SNF is an unsupervised
method that creates a comprehensive view of a disease by
computing and fusing patient similarity networks. (3)
SubtypeGAN.23 SubtypeGAN employs a deep adversarial
framework to integrate multiomics data in an unsupervised
manner. To facilitate a comparative analysis of these UMI
methods, the combination strategy proposed by Sehwan et
al.,31 denoted as “unsupervised_method + supervised_classi-
fier”, was employed in this study. This strategy leveraged
“unsupervised_method” for the latent encoding of multiomics
data and “supervised_classifier” for subsequent classification. A
total of 12 methods were derived and evaluated by pairing the
aforementioned three UMI methods with four commonly used
classifiers (KNN, RF, SVM, XGBoost). For each UMI method,

Figure 3. Performance comparison between single-omics and multiomics via MOINER. mRNA, meth, and miRNA refer to single-omics data
classification with mRNA expression data, DNA methylation data, and miRNA expression data, respectively. mRNA + meth, mRNA + miRNA, and
meth + miRNA refer to classification with two types of omics data. mRNA + meth + miRNA refers to classification with three types of omics data.
Box plots show the mean and standard deviation (whiskers). MCC: Matthews correlation coefficient.
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the optimal combination was selected as the final model, and
the results are presented in Supporting Information Tables
S5−S7.
As shown in Figure 2, the combination methods with

“unsupervised_method + supervised_classifier” strategy were
significantly worse than our MOINER. Specifically, compared
to the best-performing UMI method, MOINER was able to get
27.55%, 27.56% higher in MCC on ROSMAP and PRAD,
respectively, and 11.9% higher in F1_macro on BRCA. Most of
the UMI methods were worse than SMI methods, and certain
UMI methods displayed inferior performance compared to
TML methods (e.g., MOFA worse than SVM on ROSMAP
and SNF worse than XGBoost). These results indicate that
typical unsupervised integration methods do not work
effectively on current biomedical classification tasks, though
they are popular in sample clustering and prognostic analysis.
This also explains the reason for the emergence of novel
supervised multiomics integration approaches.
Performance of MOINER under Different Omics Data

Type. In order to demonstrate the effectiveness of multiomics
integration in improving the performance of classification task,
we performed a comparative analysis to assess the classification
effectiveness of MOINER using a combination of three omics
data types (“mRNA + meth + miRNA”), MOINER utilizing a
combination of two omics data types (“mRNA + meth”,
“mRNA + miRNA”, and “meth + miRNA”), and MOINER
using single-omics data type (mRNA, meth, and miRNA). To
achieve this goal, the integrated OmicsMap was partitioned
into a multichannel map where each channel represented an
individual omics layer and was used as the omics-specific map.
The maps for three combinations of any two omics types were

obtained by pairing different channels within the multichannel
map.
As shown in Figure 3, the MOINER models utilizing three

types of omics data consistently achieved optimal performance
across the two binary classification tasks (ROSMAP and
PRAD), which illustrated the necessity of multiomics data
integration in biomedical application. Furthermore, the
MOINER models utilizing two types of omics data presented
superior performance compared to the models employing
corresponding single-omics data (e.g., “mRNA + miRNA”
outperforms either mRNA or miRNA). Interestingly, certain
MOINER models utilizing two omics data types and single-
omics data exhibited better performance compared to the best
baseline model utilizing three types of omics data (e.g.,
“mRNA + meth” and “miRNA” in the PRAD data set). This
further substantiates that MOINER can effectively capture the
intrinsic correlations of omics-features during the early
integration of multiomics data through SSN for feature
enhancement and FSN for image representation.
Ablation Studies. In the workflow of the MOINER, it

represents multiomics data in an image-like format (Omics-
Map) using information enhancement and JV algorithms,
which are then fed into the ViT model for classification tasks.
Therefore, two ablation studies were conducted to systemati-
cally investigate the influences of the 2D-embedding strategy
(Study 1) and classification model (Study 2). Specifically, in
the Study 1, an original concatenated matrix of multiomics
data was randomly embedded into 2D space (R2DE) and then
transferred to the En-ViT model for the classification tasks. In
the Study 2, the influence of image classifier was
comprehensively evaluated. We retained the OmicsMap
transformation part and tested four classical CNN-based

Table 3. Ablation Study on the BRCA Dataset (5-Fold Cross Validation)a

Ablation studies Model Name Accuracy F1_weighted F1_macro

Study 1 MOINERR2DE+ViT 0.8526 ± 0.0178 0.8589 ± 0.0164 0.8306 ± 0.0251
Study 2 MOINERAlexNet 0.8354 ± 0.0169 0.8397 ± 0.0158 0.8022 ± 0.2530

MOINERGoogLeNet 0.7897 ± 0.0017 0.7945 ± 0.0018 0.7427 ± 0.0052
MOINERResNet 0.7703 ± 0.0036 0.7677 ± 0.0039 0.7039 ± 0.0099
MOINERVGGNet 0.8469 ± 0.0045 0.8517 ± 0.0045 0.8225 ± 0.0057

Final model MOINER 0.8674 ± 0.0212 0.8732 ± 0.019 0.8455 ± 0.0271
aThe results are presented as mean ± standard deviation. The best result is marked in bold. Study 1: original concatenated matrix of multi-omics
data was randomly embedded into 2D space (R2DE) and then transferred to the ViT model for the classification tasks. Study 2: the OmicsMap
transformation part in the image representation learning module is retained, and other CNN-based image classifiers (AlexNet, GoogLeNet,
ResNetNet, and VGGNet) are used to replace En-ViT and perform classification tasks.

Figure 4. Performance comparison of randomly 2D embedding strategy (R2DE) on different image classifiers. (a) MOINER with different
image classifier. (b) MOINER with randomly 2D embedding strategy (R2DE). (c) Performance decrease of image classifier under R2DE strategy.
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image classifiers (AlexNet,49 GoogLeNet,50 ResNet,51 and
VGGNet52). These image classifiers were implemented using
the torchvision package. For convenience, the model names for
different ablation studies were indicated in Table 3.
As shown in Table 3, removing any module from MOINER

or replacing the image classifier resulted in the decreased
classification performance on BRCA. Specifically, MOINER
outperformed MOINERR2DE+ViT by 1.49% in F1_macro.
MOINER gets 4.33%, 10.28%, 14.16%, and 2.30% higher in
F1_macro compared to MOINERAlexNet, MOINERGoogLeNet,
MOINERResNet, and MOINERVGGNet, respectively. Further-
more, the influence of R2DE strategy for these CNN-based
image classifiers was also evaluated, as shown in Figure 4 and
Table S8 & S9; “R2DE + CNN model” under randomly 2D
embedding strategy decreases by 5.5% to 13.9% in F1_macro.
The results indicate that the ViT model based on the attention
mechanism has a natural advantage in multimodal data
integration compared to other CNN models. These results
also indicate that the combination of all the proposed modules
collectively contributes to the overall superiority of MOINER
and effectively compensates for the shortcomings of simply
early integration methods in multiomics data.
A Case Study for Lung Squamous Cell Carcinoma

(LUSC) Diagnosis. The application prospects of MOINER in
disease diagnosis was validated by using the LUSC data set. To
be specific, a multiomics data set of mRNA and miRNA for
LUSC was obtained from GDC TCGA. As shown in Figure 5a,
patients with primary tumor, stage information, and both types
of omics data were included, and they were divided into early
(stage i and stage ii) and late (stage iii and stage iv) stages
based on tumor stage. In total, 465 samples (389 early stage
and 76 late-stage) were obtained. These samples were sorted
by diagnosis year in ascending order, and the top 90% samples
were used as training data for 5-fold CV, which included 345
early stage and 73 late-stage patients. The last 10% samples
were used as an independent test data, which included 44 early
stage and 3 late-stage patients. After model training on 5-fold
CV, the best model was then evaluated on the independent test
set. As shown in Figure 5b, MOINER achieved an ACC of
0.872, F1-score of 0.5, and MCC of 0.537 on the independent
test set, and all three positive samples were well-identified. It

was worth noting that the LUSC data set is highly imbalanced
with a large discrepancy between positive and negative
patients. We mainly focued on the recall metric, which was
the proportion of positive samples correctly predicted by the
model. The recall produced by MOINER was 1.0, demonstrat-
ing the power of MOINER in identifying the ground-truth
positive patients in clinical practice.
Investigating the Interpretability of MOINER. To

visualize the latent representation of multiomics samples, the
attention embedding of class token was extracted from
MOINER and the clustering performance of attention
embedding was compared to that of raw multiomics data. As
shown in Figure 6, the MOINER embedding was more
distinguishable for sample clustering than raw data and
achieved better ARI scores,45 indicating the power of
MOINER in multiomics data analysis. Furthermore, a main
advantage of MOINER was its ability in giving crucial feature-
level insights and interpretation into potential biomarker
discovery. The capability of MOINER for potential biomarker
discovery was evaluated on ROSMAP data set. Important
biomarkers were identified based on their importance score
(described in Materials and Methods). Figure 7 depicted the
top 15 features identified by MOINER from each CV. The
ranking of features was determined through a comprehensive
analysis of 5-fold CV, where features identified more frequently
across the folds received higher rankings.
Based on the comprehensive consideration of 5-fold CV

results, MOINER identified several crucial mRNA features,
including APLN, ANKRD30B, SLC25A18, GPER1, and
CDK2AP1 et al. APLN encodes Apelin, a bioactive neuro-
peptide53 widely distributed within neuronal cell bodies and
fibers across the neuraxis.54 Numerous investigations suggest
that apelin may exert a crucial influence on the pathophysi-
ology of AD by regulating Tau and amyloid-β,55−57 and it has
been suggested as a potential focus for neurodegenerative
diseases beyond AD.55,58 Additionally, Semick et al. initially
indicated a significant downregulation of ANKRD30B in AD
patients when compared to the control group in entorhinal
cortex brain regions and hippocampus, suggesting that it is a
promising AD-related gene.59 Other genes identified by
MOINER, such as GPER160 and CDK2AP1,61 had also been

Figure 5. A case study for lung squamous cell carcinoma (LUSC) diagnosis. (a) LUCS data set processing. Patients with primary tumor, stage
information, and both types of omics data are included, and they are divided into early (stage i and stage ii) and late (stage iii and stage iv) stages
based on tumor stage. These samples are sorted by diagnosis year in ascending order, and the top 90% samples are used as training data. The last
10% samples are used as an independent test data. (b) MOINER prediction result on Test set. ACC: accuracy, MCC: Matthews correlation
coefficient.
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proved to be associated with AD. Moreover, highly ranking
miRNAs identified by MOINER, such as has-mir-129-5p,62

has-mir-132,63,64 has-mir-376a,65 and has-mir-127−3p66 et al.,
had also been reported to be associated with AD.67 For
instance, there is an association between the expression of miR-
129-5p in serum and the levels of cognitive function markers in
AD patients.62 The validation of important features identified
by MOINER against existing experimental literature under-

scores the promising applications of MOINER in the discovery
of potential biomarkers for disease diagnosis in clinical
practice.

■ CONCLUSION
In this study, a novel multiomics early integration framework
(MOINER) was constructed by (1) information enhancement
and (2) image representation learning for biomedical

Figure 6. TSNE visualization of patients based on the MOINER attention embedding (right) and the initial raw expression (left). (a) Visualization
of the ROSMAP data set (Alzheimer’s disease and normal control). (b) Visualization of the PRAD data set (early stage and late stage). (c)
Visualization of the BRCA data set (normal-like, basal-like, human epidermal growth factor receptor 2 (HER2)-enriched, Luminal A, and Luminal
B subtypes). The adjusted Rand index (ARI) score is calculated and shown in the plot.
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classification and biomarker discovery. Based on a compre-
hensive comparison with SOTA multiomics integration
methods and traditional machine learning models, our
proposed method consistently achieves superior performance
and holds good interpretability. The effectiveness of each key
module in MOINER is demonstrated by systematic ablation
studies. All in all, this work enables better use of multiomics
data and would become an essential tool for omics research,
disease diagnosis, and biomarker discovery.
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