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Abstract

Protein structure prediction is a longstanding issue crucial for identifying new drug targets and providing a mechanistic understanding
of protein functions. To enhance the progress in this field, a spectrum of computational methodologies has been cultivated. AlphaFold2
has exhibited exceptional precision in predicting wild-type protein structures, with performance exceeding that of other methods.
However, predicting the structures of missense mutant proteins using AlphaFold2 remains challenging due to the intricate and
substantial structural alterations caused by minor sequence variations in the mutant proteins. Molecular dynamics (MD) has been
validated for precisely capturing changes in amino acid interactions attributed to protein mutations. Therefore, for the first time, a
strategy entitled ‘MoDAFold’ was proposed to improve the accuracy and reliability of missense mutant protein structure prediction
by combining AlphaFold2 with MD. Multiple case studies have confirmed the superior performance of MoDAFold compared to other
methods, particularly AlphaFold2.
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INTRODUCTION
Protein structure prediction has been one of the longstanding
issues, which is crucial for uncovering novel drug targets and
facilitating a mechanistic understanding of protein functions
[1–3]. With the advancement of next-generation sequencing, large
amounts of protein sequences have accumulated, and over 200
million arrangements have been available in UniProt [4]. Acquir-
ing experimentally validated protein structures is considerably
more challenging compared to protein sequences, primarily due
to its time-consuming and labor-intensive nature. [5–7]. So far, the
RCSB Protein Data Bank (PDB) includes only 200 thousand protein
structures [8], which asks for the development of new strategies to
significantly accelerate the process of protein structure prediction
[9–11]. Thus, a variety of computational methods have been
constructed to facilitate the research developments in this
particular direction [12–14], which successfully promotes the
identification of efficacy drug targets, the understanding of the
molecular mechanism underlying protein functions and so on
[15–17].

However, the longstanding challenges for protein structure pre-
diction based on computational methods are insufficient aware-
ness of protein structure prediction on the ground of sequences
[18] and the sophistication of protein folding processes [19, 20].
Notably, missense mutations in proteins have the potential to
significantly perturb the folding free energy of mutant proteins
compared to their wild-type (WT) counterparts [21, 22]. This

distinction has been reported to change the protein folding pro-
cess, making the prediction accuracies of existing methods hardly
satisfactory [23–25]. In other words, it is still extremely challeng-
ing for current methods/tools to improve the prediction accu-
racy for mutant protein structures, and it is essential to develop
methods for protein structure prediction. To address this critical
issue, two distinct computational strategies have been proposed,
broadly categorized as homology modeling (HM)-based methods
[26–28] and machine learning (ML)-based ones [29–31].

HM-based strategy has been widely used for protein structure
prediction, and many tools have been developed (HOMELETTE,
SWISS-MODEL, GPCRM) [26–28], but they are severely dependent
on the homology among the analyzed sequences. To deal with
this issue, ML-based strategy has thus been constructed, which
learns protein structures irrespective of sequence homology
[29–31]. Some typical tools under this strategy include AlphaFold2,
ColabFold and RoseTTAFold, all of which apply machine learning
framework(s) to achieve great predictive performance. For
instance, the AlphaFold2 in ‘The 14th Critical Assessment of Protein
Structure’ Prediction (CASP14) [12], showcased a level of accuracy
that competes with experimental structures, significantly
surpassing the performance of other methods. However, due to
the dramatic effect of missense mutation on the protein folding
process and the fact that training data for AlphaFold2 do not
contain altered structures of these mutated proteins [32–34], the
performance of AlphaFold2 for predicting missense mutations
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on protein structures is severely decreased. This limitation of
AlphaFold2 was also reported in the journal Nature Structural &
Molecular Biology and the FAQ on the AlphaFold2 Protein Database
website [35, 36]. Besides, since most methods predict structures
based on those available in the PDB rather than by driving
forces of protein folding [36], it is still extremely challenging
for existing methods to improve the prediction performance of
mutant protein structures.

Herein, a protein structure prediction strategy combining
AlphaFold2 with molecular dynamics (MD), named ‘MoDAFold’
was proved to improve the accuracy and reliability of mutant
protein structure prediction. First, leveraging the approach for
protein structure prediction, AlphaFold2 [37–39], we conducted
predictions of both WT and mutant structures based on the
corresponding protein sequences. Second, Assisted Model Building
with Energy Refinement (Amber, a typical tool for MD) [40, 41] was
employed to refine the predicted protein structures derived from
AlphaFold2. Finally, six protein structures with significant pair
distinctions between WT and mutant protein underlying only a
single mutation were collected to evaluate the performance of
this new strategy (MoDAFold). The prediction structures of these
WT and mutant proteins predicted by AlphaFold2/MoDAFold were
aligned with those experimental structures and evaluated by
the root-mean-square deviation (RMSD) metric [42, 43], respectively.
All in all, our MoDAFold was expected to significantly improve
the performance of mutant protein structure prediction. Mul-
tiple case studies based on benchmark were also conducted,
which confirmed the superior performance of MoDAFold than
AlphaFold2 [36].

RESULTS
Formation of pocket (channel) in BRCA1-BRCT
induced by A1708E mutation
The Breast cancer type 1 susceptibility protein (BRCA1) is an essen-
tial mediator protein in DNA damage-induced nuclear signaling
events [44, 45]. The BRCT domain is a tandem pair of repeats at the
BRCA1 C-terminal region, which mediates the interactions with
phosphorylated partner proteins, such as DNA helicase, BACH1,
etc. [46, 47]. There is an important missense mutation on BRCT,
A1708E, which is closely associated with an increased risk of
breast and ovarian cancer [48]. As reported, A1708 is wrapped
in a small hydrophobic pocket between two BRCT repeats, and
replacement with the bulkier and charged glutamic acid residue is
expected to destabilize their interaction [36]. Moreover, the A178E
missense variant at this position strongly disrupts the interaction
of BRCT with phosphopeptides and the stability of the protein fold.
In other words, the A1708E mutation enlarges the hydrophobic
pocket of the mutated position in the BRCA1-BRCT, which has a
significant impact on changing its structure and function, leading
to distinctive structural differences from the WT [49]. Thus, to
address the great impact of missense mutations on protein struc-
ture alterations, protein structures of WT and mutant protein
structures (A1708E) were predicted in this study using AlphaFold2.
The corresponding systems simulated with Amber, and the RMSD
among the related forms were calculated by PyMOL [50].

AlphaFold2 predicted glutamic acid-substituted BRCT at posi-
tion 1708 (Figure 1A; right, blue) to be structurally equivalent to
WT BRCT (Figure 1A; left, light blue) with only minor differences
in RMSD, which were 0.81 and 0.53 Å compared to the experimen-
tal structure (grey), respectively. Additionally, for A1708E BRCT,
there is slightly more space between the helices of the two repeats
(Figure 1B, C), with the distance between the α-carbons of residues

1708 and 1782 at 5.4 Å for WT (Figure 1B; left) and 6.9 Å for
the A1708E mutant (Figure 1C; left). The E1708(Cα)–W1786(Cα)
distances at 8.8 Å for WT (Figure 1B; left) and 10.8 Å for the A1708E
mutant (Figure 1C; left). This increased distance to accommodate
the longer glutamic acid was insufficient to prevent the interac-
tion of the acidic amino acid E1708 with the hydrophobic amino
acid L1786. Generally, this study confirms that AlphaFold2 cannot
accurately predict the protein structure of missense mutations
(A1708E) in BRCT as illustrated by previous reports [36].

While MoDAFold performed comparably to AlphaFold2 in
predicting the WT structure, it showed better performance in
predicting the mutant structure under the evaluation criteria
(Cα distance, space-filling of hydrophobic pockets). Specifically,
the E1708(Cα)–W1782(Cα) distances were 5.3 Å for WT BRCT
(Figure 1B; right), 9.7 Å for A1708E BRCT (Figure 1C; right), and
the E1708(Cα)–L1786(Cα) distances were 8.9 Å for WT BRCT
(Figure 1B; right), 14.2 Å for A1708E BRCT (Figure 1C; right). Due
to the increasing distances among three amino acids leading to
the enlargement of the hydrophobic pocket between two BRCT
repeats, the pocket of the simulated A1708E mutant (orange) was
significantly larger than that of the WT (blue) by hydrophobic
pockets filled with yellow spheres, respectively (Figure 1D, E).
Surprisingly, a pocket(channel) formation of pocket (channel)
in BRCA1-BRCT was induced by A1708E mutation, and this
channel was not predicted by AlphaFold2. The changes in WT
and mutant structures during MD simulation were also displayed
by the trend of the distances among E1708(Cα), W1782(Cα)
and L1786(Cα). Furthermore, the E1708(Cα)–L1786(Cα) and the
E1708(Cα)–W1782(Cα) distances of the A1708E mutant increased
after 300 ns, and these of WT were smooth during the 500 ns MD
simulation. The result indicates that MoDAFold could predict the
trend in structural changes of A1708E BRCT. Two other mutant
proteins mentioned by Nature Structural & Molecular Biology ()
were also studied similarly, and the predicted structure of the
mutant proteins was also somewhat enhanced (more details were
described in Supplementary information 1 and 2).

Unfolding of engrailed homeodomain induced by
L16A mutation
Homeodomains are common eukaryotic DNA-binding domains
that consist of a short-extended strand with 3 helices [51, 52].
Drosophila melanogaster Engrailed homeodomain (En-HD) is a 61-
residue three-helix bundle protein with helices spanning residues
10–22 (H1), 28–37 (H2) and 42–56 (H3) [53]. The L16A mutation of
En-HD eliminates several local interactions and numerous long-
range interactions with residues in H2, H3, and the turn between
H2 and H3 that leads to the unfolding of the helix 1 (Figure 2A)
[54]. Meanwhile, multiple conformers of the solution structure of
Engrailed homeodomain L16A mutant are provided in the PDB
database, and the different conformations of H1 (helix 1) are a
consequence of the lack of a significant number of long-range
NOEs between them and residues 28–53 (Protein Data Bank code
1ZTR).

AlphaFold2 predicts similar structures for WT and L16A En-HD,
with an average RMSD of only 0.49 Å. The mean pLDDT score
of L16A mutation is 87.7, which is lower than that of the top-
ranking WT structure, with a 94.1 score (Figure 2B, C). The RMSD is
about 11.1 Å between 1ZTR (solution structure supported by PDB
database) and AlphaFold2 predicting the structure of Engrailed
homeodomain L16A mutant (Figure 2D). After performing MD
simulations at constant pH 5.7, the helix1 is unfolded, and the
relative positions of the three helices in the predicted overall
structure are consistent with the actual solution structure, with
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Figure 1. Structural prediction for mutant and WT BRCT by AlphaFold2 and MoDAFold. (A) Overlayed the experimental BRCT structure (grey, PDB ID:
1N5O) and AlphaFold2 predicted structure for WT BRCT (light blue, left). Overlayed the experimental BRCT structure (grey) and AlphaFold2 predicted
structure for A1708E (blue, right). Sidechain-heavy atoms are displayed for position 1708 and the surrounding residues. b, Overlayed AlphaFold2 predicted
structure (light blue, left) and MoDAFold simulated structure (yellow, right) for WT BRCT. Distances of E1708-L1786 and E1708-W1782 Cα don’t increase
after the dynamics simulation. (C) Overlayed AlphaFold2 predicted structure (blue ,left) and MoDAFold simulated structure (orange, right) for BRCT
A1708E. Distances of E1708-L1786 and E1708-W1782 Cα increase a lot after the dynamics simulation. (D) The surface (blue) and cavity (yellow ball) of
BRCT A1708E structure predicted by AlphaFold2. (E) The surface (orange) and cavity (yellow ball) of BRCT A1708E structure predicted by MoDAFold. The
black oval highlights the protein channel surrounding position 1708 in the mutant. (F) Trends in E1708-L1786 and E1708-W1782 Cα distances of WT
(yellow, above) and A1708E (orange, below) during MD simulations.

an average RMSD. of 6.7 Å (the H1 helix is not fixed in the solution
structure) (Figure 2F).

Structural rearrangements of prion protein
induced by V210I mutation
Prion protein is closely related to transmissible spongiform
encephalopathies, which are deadly diseases and the NMR
structures of human prion protein ((HuPrP)) contain a globular
domain with three α-helices and a short anti-parallel β-sheet
(Figure 3A) [55, 56]. Comparison with the structure of the WT
(PDB ID: 1QLZ) revealed that although the two structures share

similar global architecture, its V210I mutation (PDB ID: 2LEJ)
introduces some local structural differences. The variations
reported are mainly concentrated in the α2–α3 inter-helical
interface and in the β2–α2 loop region (Figure 3A), as residue
210 is part of a hydrophobic core that is critical to the overall
stability of the protein [57, 58]. The residues 180 and 210 are
located in the α2–α3 helix interface on WT, which is associated
with direct hydrophobic contacts. After mutation, presumably
due to steric crowding, the side chain of Val180 changes direction.
Furthermore, the side chains of the other two residues, Val176
and Ile184, are also significantly shifted compared to their
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Figure 2. Structural prediction for mutant and WT En-HD by AlphaFold2 and MoDAFold. (A) Overlayed the experimental En-HD structure (grey, PDB
ID: 1ENH) and En-HD L16A structure (light green, PDB ID: 1ZTR). Sidechain-heavy atoms are displayed for position 16 and the surrounding residues.
The arrow indicates the expansion of helix 1. (B) Overlayed the experimental En-HD structure (grey) and AlphaFold2 predicted structure for En-HD
L16A (blue). (C) Overlayed the experimental En-HD structure (grey) and AlphaFold2 predicted structure for WT En-HD (light blue). (D) Overlayed the
experimental En-HD L16A structure (light green) and AlphaFold2 predicted structure for En-HD L16A (blue). (E) Overlayed the experimental En-HD
structure (grey) and WT En-HD structure predicted by MoDAFold (yellow). (F) Overlayed the experimental EnHD L16A structure (light green) and En-HD
L16A structure predicted by MoDAFold (orange).

positions in the WT protein. Thus, these rearrangements affect
several hydrophobic contacts commonly present in WT proteins,
especially residue Val180. This change can be seen visually
by the different distances among these amino acids from
WT (Supplementary Table S1). Another significant structural
variation in comparison to the WT is the β2–α2 loop region
showed by Tyr169–Phe175, Phe175–Tyr218, Tyr163–Tyr218 and
Tyr163–Phe175 distances (Supplementary Table S2) [59].

However, AlphaFold2 cannot capture the small structural
changes brought about by this mutation. The structure predicted
by AlphaFold2 of V210I mutation is almost identical to the
expected WT structure with an average RMSD of only 1.5 Å, while
very different from the actual mutant structure with an average
RMSD of 2.6 Å (Figure 3B, C). According to the experimental
information provided by the PDB database, the relative positions
of the α2–α3 region in the mutant protein are closer to the actual
mutant structure reported after a period of simulation in the
solution environment of pH 5.5 (Figure 3E), shown by intra- and
inter-helical distances between residues from α2 and α3 helices
(Figure 3F; Supplementary Table S1). In contrast, the WT structure
did not change much after the simulation for a while (Figure 3D).

Likewise, the protein structure after dynamics simulation is closer
to the actual crystal structure than that predicted by AlphaFold2
from distances between residues involved in the interface of β2,α2
and α3 secondary structure elements (Supplementary Table S2).

Fold switching of protein G induced by L45Y
mutation
While disorder-to-order rearrangements are relatively common,
the ability of proteins to switch from one ordered fold to an
entirely different fold is generally considered rare and few fold
switches have been characterized [60, 61]. However, the GA
domain adopts a 3-α helix bundle structure (PDB ID: 2LHC)
and binds human serum albumin. In contrast, the GB domain
with only one mutation L45Y, has a 4β + α fold (PDB ID: 2LHD)
and binds immunoglobulin G (IgG) (Figure 4A) [62, 63]. So, the
A and B domains of protein G are classic model systems of
folding for decades, the subject of numerous experimental and
computational studies. The study has investigated the folding
of this protein by using a Markov State Model (MSM) built on
about 50 ms of MD simulations, and models such as the one
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Figure 3. Structural prediction for mutant and WT HuPrP by AlphaFold2 and MoDAFold. (A) Overlayed the experimental HuPrP structure (grey, PDB
ID: 1QLZ) and HuPrP V210I structure (light green, PDB ID: 2LEJ). The black rectangle highlights the α2 and α3 helices of experimental HuPrP (grey) and
HuPrP V210I (light green). Sidechain-heavy atoms are displayed for position 210 and the surrounding residues. (B) Overlayed the α2 and α3 helices of
experimental HuPrP (grey) and AlphaFold2 predicted structure for HuPrP (light blue). (C) Overlayed the α2 and α3 helices of experimental HuPrP V210I
(light green) and AlphaFold2 predicted structure for HuPrP V210I (blue). (D) Overlayed the experimental HuPrP structure (grey) and HuPrP structure
predicted by MoDAFold (yellow). (E) Overlayed the experimental HuPrP V210I structure (light green) and HuPrP V210I structure predicted by MoDAFold
(orange). (F) Trends in V180(Cγ 1)–I184(Cδ1), V176(Cγ 1)–V180(Cγ 2), V176(Cγ 1)–Y218(C ε1) distances of HuPrP V210I during MD simulations.

presented have been successful at comparing with experiments
and providing atomic-level detail of folding reactions [64].

However, after 500 ns of ordinary dynamics simulation and
1.5 μs of accelerated dynamics simulation, the improvement
effect of MD on other proteins, which are 56-amino-acid domains
termed GA and GB from the multi-domain Streptococcus cell sur-
face protein G [65], is fragile. The structure of GB 98 predicted by
AlphaFold2 (Figure 4C) is similar to GA 98 indicated (Figure 4B),
and it is shown that MD cannot correct erroneous structure for
single point mutations with significant changes in secondary
structure by its simulating results (Figure 4D, E).

DISCUSSION AND CONCLUSION
AlphaFold2 has limitations in accurately describing protein struc-
tures for missense mutant proteins [36], which are described
in previous studies and also confirmed by our study. The limit
arises from the fact that AlphaFold2’s predictions are based on
known sequence and structure data rather than the physical
laws of protein folding, and its training data does not include
altered structures of mutant proteins [66]. Therefore, combining
AlphaFold2 with physics-based computational methods like MD

simulations can be a valuable strategy for accurately predicting
the structure of point mutant proteins.

This study finds that in some cases where missense muta-
tions only affect the positions between secondary structures, MD
simulations can provide predictions after a simulation period
[67]. However, the initial structure used in simulations may be
unreasonable for mutants with significant changes in secondary
structure. Unique simulation methods (such as MSM [68]) or long-
time simulations can be employed to simulate these challeng-
ing protein structures successfully. The accuracy of simulations
generally depends on the availability of accurate experimental
protein structures or reliable homology models as initial condi-
tions. Using protein structures predicted by AlphaFold2 as ini-
tial structures for MD simulations can improve the accuracy of
predicting the structures of missense mutant proteins. However,
improvements in the model or the use of other protein secondary
structure prediction methods may be necessary for mutants with
significantly altered secondary structures.

In conclusion, the study suggests that the tertiary structures
of mutant proteins predicted by AlphaFold2 need to be more
accurate. MoDAFold, which combines AlphaFold2 with MD
simulations, has shown superior performance in predicting the
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Figure 4. Structural prediction for mutant and WT GA98 by AlphaFold2 and MoDAFold. (A) Overlayed the experimental GA98 structure (grey, PDB ID:
2LHC) and GA98 L45Y structure (light green, PDB ID: 2LHD). Sidechain-heavy atoms are displayed for position 1708. (B) Overlayed the experimental
GA98 structure (grey) and AlphaFold2 predicted structure for GA98 (light blue). (C) Overlayed the experimental GA98 L45Y (light green) and AlphaFold2
predicted structure for GA98 L45Y (blue). (D) Overlayed AlphaFold2 predicted structure (light blue) and MoDAFold simulated structure (yellow) for WT
GA98. (E) Overlayed AlphaFold2 predicted structure (blue) and MoDAFold simulated structure (orange) for GA98 L45Y.

structures of missense mutant proteins in multiple cases.
MoDAFold is expected to significantly enhance the accuracy of
mutant protein structure prediction and represents an important
strategy for accurately predicting the structures of missense
mutant proteins.

MATERIALS AND METHODS
WT and mutant proteins data collection
In this study, six protein structure pairs with significant distinc-
tions between WT and mutant protein underlying only a single
mutation were collected to evaluate the performance of this new
strategy (MoDAFold). Three proteins (BRCT, MyUb and UBAs) were
applied to discuss whether AlphaFold2 can predict the impact of
missense mutations on structure [36], and they were also adopted
in our study. The experimental mutant structures of these three
proteins were unavailable in PDB, so the other three proteins with
mutant structures in PDB were selected by following the pipeline
as shown in Supplementary Figure S1. First, more than 16,000
papers related to missense mutant proteins were scanned and 54
related missense single-nucleotide variants were screened from
these papers (as shown in Supplementary Table S1). Second, only
fourteen pairs of proteins whose WT and mutant proteins had
experimentally solved structures in PDB were selected for the sub-
sequent analysis. Finally, we selected proteins with RMSD greater
than 2 Å, and to prevent the interaction between the strands
from affecting the results, we chose single-stranded proteins.
Three pairs of proteins (En-HD, HuPrP and GA98) were chosen for
prediction to compare the prediction effects of these methods
intuitively. As a result, six pairs of proteins were collected for
structure prediction of WT and mutant proteins and performance
comparison of methods.

Structure prediction
Protein structure prediction with AlphaFold2
The first step of our strategy (MoDAFold) was to predict the WT and
mutant structures based on protein sequences using AlphaFold2.
By introducing ‘Evoformer’ module, combined with multiple
sequence alignments and equivariant attention architecture,
AlphaFold2 achieves accurate prediction of the 3D coordinates
of all heavy atoms of a give protein sequence. It also provides
the predicted local-distance difference test score (pLDDT) of
the corresponding structure, which is used to evaluate the
performance of the structure prediction on a scale of 0–100, with
closer to 100 indicating the better the prediction performance
[12]. The previously collected WT and mutant protein sequences
can be imported into the AlphaFold2 model to obtain the
corresponding PDB files. The default parameters were used in the
predicting process. It is important to note that protein prediction
with AlphaFold2 is computationally intensive, and our server
has a lot of CPUs and eight GPUs to support the computational
consumption.

MD simulation with Amber
In this study, the state-of-the-art MD simulation (Gaussian accel-
erated molecular dynamics, GaMD) [69] is executed for six pairs of
proteins screened including WT and mutant, using the structures
predicted by AlphaFold2 as initial structures. During the experi-
ment, most proteins are simulated in an aqueous solution, using
sodium and chloride ions to balance the charge, but some pro-
teins, such as the engrailed homeodomain and human prion pro-
tein, are simulated in a specific pH environment to approximate
the experimental results. Besides, 10 Å of water was added per
side to avoid protein–protein interactions. In addition, to ensure
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the stability of the obtained protein structure, GaMD [70] of 1 μs
is performed after the long-term ordinary molecular simulation
(more detail was shown in the Supplementary Method).

Performance evaluation
The RMSD was applied in this study to evaluate the perfor-
mance for protein structure prediction, which was a wild mea-
surement to calculate distances between corresponding alpha-
carbon atoms (Cα) in two compared structures. The formula was
as follows:

RMSD =
√

1
n

∑n

i=1

(
yi − ŷi

)2

where n represented the length of a protein sequence, and i
denoted the position identifier for one amino acid in this protein.
yiand ŷi indicated the Cα coordinates of the ith amino acid in
two compared structures within 3D space, respectively. A smaller
RMSD value means a lower difference between the experimental
structure and the prediction. Meanwhile, these RMSD changes
during the MD were was also used to monitor whether the sim-
ulation has reached a balance and to determine the final stable
protein conformation.

Key Points

• MoDAFold was proposed to improve the accuracy and
reliability of missense mutant protein structure predic-
tion.

• MoDAFold combined AlphaFold2 and molecular dynam-
ics (MD) to leverage the strengths of both methods.

• Multiple case studies have demonstrated the superior
performance of MoDAFold compared to other methods,
including AlphaFold2.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxford
journals.org/.
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