Bioinformatics, 2023, 39(12), btad715
https://doi.org/10.1093/bioinformatics/btad715
Advance Access Publication Date: 11 December 2023

Original Paper

OXFORD

Systems biology

OBMeta: a comprehensive web server to analyze
and validate gut microbial features and biomarkers
for obesity-associated metabolic diseases

Cuifang Xu'", Jiating Huang'%", Yongqiang Gao", Weixing Zhao'?, Yiqgi Shen®, Feihong Luo?,
Gang Yu®, Feng Zhu ® %*, Yan Ni ® %*

'Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhengjiang
310052, China

2Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, Zhengjiang 310058, China
3College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhengjiang 310058, China

*Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
Department of Data and Information, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhengjiang 310052, China
®College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhengjiang 310058, China

"Equal contribution.

*Corresponding authors. Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Binsheng Road 3333,
Hangzhou, Zhengjiang 310052, China. E-mail: yanni617@zju.edu.cn (Y.N.); College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866,
Hangzhou, Zhejiang 310058, China. E-mail: zhufeng@zju.edu.cn (F.Z.)

Associate Editor: Pier Luigi Martelli
Abstract

Motivation: Gut dysbiosis is closely associated with obesity and related metabolic diseases including type 2 diabetes (T2D) and nonalcoholic fatty liver
disease (NAFLD). The gut microbial features and biomarkers have been increasingly investigated in many studies, which require further validation due
to the limited sample size and various confounding factors that may affect microbial compositions in a single study. So far, it lacks a comprehensive
bioinformatics pipeline providing automated statistical analysis and integrating multiple independent studies for cross-validation simultaneously.

Results: OBMeta aims to streamline the standard metagenomics data analysis from diversity analysis, comparative analysis, and functional analysis
to co-abundance network analysis. In addition, a curated database has been established with a total of 90 public research projects, covering three
different phenotypes (Obesity, T2D, and NAFLD) and more than five different intervention strategies (exercise, diet, probiotics, medication, and
surgery). With OBMeta, users can not only analyze their research projects but also search and match public datasets for cross-validation. Moreover,
OBMeta provides cross-phenotype and cross-intervention-based advanced validation that maximally supports preliminary findings from an individual
study. To summarize, OBMeta is a comprehensive web server to analyze and validate gut microbial features and biomarkers for obesity-associated
metabolic diseases.

Availability and implementation: OBMeta is freely available at: http://obmeta.met-bioinformatics.cn/.

evidence has demonstrated that dysbiosis of gut microbiota
propels the emergence of obesity and correlates with other
metabolic diseases. For example, lipopolysaccharides (LPS)
derived from pathogenic bacterial membranes can trigger
chronic inflammation in T2D and obesity (Qin et al. 2012,
Boulangé et al. 2016). The proliferation of the short-chain
fatty acids-producing bacteria benefits weight loss and enhan-

1 Introduction

Obesity is now a global health issue with rapidly increased
prevalence that reached 39% worldwide and affected almost
2.5 billion people according to the World Health Organization
(WHO) report in 2016 (Chooi et al. 2019). Previous studies
have showed that obesity increases the risk of other metabolic
diseases, including type 2 diabetes (T2D) (Franks and

McCarthy 2016), nonalcoholic fatty liver disease (NAFLD)
(Riazi et al. 2022), and metabolic syndrome (encompassing hy-
pertension, dyslipidemia, and insulin resistance) (DeMarco
et al. 2014, Khan et al. 2018). The epidemic of these global
obesity-associated diseases causes extensive social and eco-
nomic implications, so effective intervention is necessary.

Gut microbiota is a complex community of microorganisms
inhabiting the host gastrointestinal tract that has crucial roles
in host health maintenance (Jandhyala et al. 20135). Increasing

ces insulin sensitivity (Tolhurst et al. 2012, Marques et al.
2018). In addition, different kinds of weight loss strategies,
such as exercise, medication, probiotics intervention (Wang
et al. 2015), vegetarian diet (Tomova et al. 2019), and even
stomach surgery (Ulker and Yildiran 2019), can reshape gut
microbiota. Therefore, identifying reliable and consistent mi-
crobial biomarkers is essential helping us to explore prospec-
tive therapeutic targets for obesity-associated metabolic
diseases.
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With the widespread application of next-generation se-
quencing technologies in the biomedical field, accumulating
number of obesity-associated datasets of gut microbiome has
been published in public databases. Metagenomic analyses
are challenging due to the large volume and complex nature
of raw sequencing data. For nonbioinformatics experts, it is
demanding to apply computational programming and algo-
rithms for high-throughput data processing and analysis.
Recently, to make more available of comparative metagenom-
ics analysis for clinicians and bench researchers, several pow-
erful web servers have been developed, such as MG-RAST
(Wilke et al. 2016), METAGEN:-assit (Arndt et al. 2012),
MicrobiomeAnalyst (Lu ef al. 2023), and Busybee (Schmartz
et al. 2022). They offer efficient microbial data processing,
analysis, and visualization.

After initial biomarker discovery, further validation is im-
portant due to the limited sample size in an individual study
and various confounding factors that may affect preliminary
findings. Since it is time/cost-consuming to conduct indepen-
dent studies, applying bioinformatics techniques to analyze
publicly available metagenomic datasets is preferred in order
to validate reliable biomarkers more efficiently. So far, it lacks
a comprehensive bioinformatics pipeline providing automated
statistical analysis and cross-project validation with compara-
ble studies simultaneously. To identify and validate the micro-
bial biomarkers of obesity associated metabolic diseases, we
have developed a comprehensive and automated data analysis
platform named OBMeta, which integrates microbial diver-
sity analysis, comparative analysis, functional analysis, and
co-abundance network construction. In addition, OBMeta
provides  cross-project, cross-phenotype, and  cross-
intervention validation based on the curated database. It helps
users to identify the consistent microbial features and reliable
biomarkers of obesity-related metabolic diseases efficiently.

2 Materials and methods
2.1 Data collection and curation

Raw sequencing reads (including 16S amplicon raw reads and
metagenomic raw reads) were downloaded from NCBI SRA
(Sequence Read Archive) (Kodama er al. 2012) and EBI ENA
(European Nucleotide Archive) (Harrison et al. 2019) data-
bases using transfer tool Aspera. Sequencing related metadata
and host related metadata were obtained from these databases
or published paper, respectively. We manually included the
datasets based on the following criteria: datasets collected
from biological samples (e.g. feces, intestine, oral, skin, etc.)
of humans and animals; studies with at least one single-factor
comparison on obesity-associated metabolic diseases (i.e. obe-
sity, T2D, or NAFLD); raw data can be linked to at least one
published paper.

2.2 Processing of raw data

Supplementary Figure S1 illustrates the detailed pipeline for
constructing the curated database of OBMeta. We evaluated
the overall quality of the downloaded datasets using FastQC
and then processed the 16S amplicon and metagenomic raw
data, respectively. Supplementary Table S1 summarized the
software or algorithms during the data processing.

For the 16S sequences, QIIME 2 (Hall and Beiko 2018)
and DADA 2 (Prodan et al. 2020) were applied for processing
sequences and denoising respectively. The output from
DADA 2 was clustered into 99% identity using an
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operational taxonomic unit (OTU) picking protocol against
the Sliva 132 database. Functional annotations were con-
ducted by PICRUSt2 (Douglas et al. 2020) with default
parameters.

For metagenomic sequences, the sequencing vectors and
low-quality bases was removed by Trimmomatic (Bolger ez al.
2014). The clean reads were mapped against the host refer-
ence genome using Bowtie 2 (Langmead and Salzberg 2012)
to filter out the host contamination. The high-quality reads of
single sample were first assembled by MEGAHIT (Li et al.
2016). Next, QUAST (Gurevich et al. 2013) was applied to
evaluate the quality of the assembling. Then, the assembled
reads were predicted open reading frames (ORFs) and filtered
(<100 nt) by MetaGeneMark (Hyatt et al. 2012). The quali-
fied reads were translated into amino acid sequences and clus-
tering into nonredundant contigs with 95% identity and 90%
coverage using CD-HIT. Finally, Diamond was used to anno-
tate different taxonomies and functional pathways against
NR and KEGG databases with an e-value cutoff of 1E-3, re-
spectively. Profiles of different taxonomic relative abundance
and functional abundance were determined by Salmon (Patro
etal. 2017).

2.3 Consistency evaluation of microbial changes
among different projects

To evaluate the consistency of a significantly varied taxon
among different comparisons, we defined a score by the
formula:

nl —n2
Consist CS) = - ,
onsistency score (CS) Number of comparisons #

where n1 is the number of intergroup comparisons with a sta-
tistically significant increase in a case group; n2 is the number
of intergroup comparisons with a statistically significant de-
crease in a case group; # indicates statistically significant
comparison.

The value of CS score (ranging from —1 to 1) indicates the
consistency degree of a taxon across different projects. The
CS value close to 1 or —1 indicates the higher degree of con-
sistent up or down-regulation. To be noted, a single project
may include multiple comparisons, e.g. different time points
or dosages, thus the number of comparisons is considered for
evaluation indeed. In addition, considering the degree of
changes between two groups to ensure that a potential bio-
marker with a larger fold change will receive a higher score, a
weighted consistency score (WCS) is calculated as follows:

, , i1 (aLog,FC;
Weighted consistency score (WCS) = w,

> -1 (ILog, FCil)
where i is the comparison with a statistically significant
change and a is the coefficient 1 or —1 for up- or down-
regulation of taxon abundance.

2.4 Software development and implementation

OBMeta is implemented as a web server using JavaScript,
HTML, and cascading style sheets for fronted development.
The core JavaScript library Vue.js (https://vuejs.org/) and
Spring Boot (https://spring.io/projects/spring-boot) were used
as the main frontend and backend frameworks, respectively.
The interactive interface was implemented using WebSocket.
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R in-house scripts were used for backend data processing,
analyses, and visualizations. Open-source data management
system MySQL (https://www.mysql.com/) is used for data
persistent storage. OBMeta was deployed on Dell PowerEdge
Server in the Children’s Hospital, Zhejiang University School
of Medicine with 32 virtual CPUs (2.10 Hz), 256 GB memory,
and 30T solid-state drives.

3 Results

OBMeta is designed with three modules: (i) my project analy-
sis, (ii) cross-project validation, and (iii) advanced validation.
The overall workflow and analysis strategy are summarized
in Fig. 1 and Supplementary Fig. S2. The first module pro-
vides the comparative analysis including feature analysis, di-
versity analysis, functional analysis, and network analysis.
The second module is to perform cross-project validation of
gut microbial features across selected projects. The last mod-
ule provides advanced validation for cross-phenotype or
cross-intervention comparisons. All the results from main
modules are available to download for further analysis and
interpretation.

3.1 My project analysis

3.1.1 Data uploading and filtering

16S rRNA sequencing and shotgun metagenomics are the
most common sequencing strategies to characterize microbial
compositions. OBMeta is designed to accept 16S rRNA
marker gene data and metagenomics data. To perform com-
positional comparative analysis, two files containing sample
information and abundance records are required. In addition,
OBMeta provides functional annotation and interpretation if
representative sequence or KO (KEGG Orthology) abundance
datasets are available. OBMeta is compatible with taxonomy
outputs from QIIME2 (Bolyen et al. 2019), Kraken2 (Wood
et al. 2019), and MetaPhlAn4 (Blanco-Miguez et al. 2023), as
well as functional annotation datasets from PICRUSt2

(Douglas et al. 2020), Tax4Fun (Wemheuer et al. 2020), and
HUMAnNN3 (Beghini et al. 2021) (Supplementary Table S3).
After uploading the data files, OBMeta will process the
missing data automatically following the predefined steps: (i)
to exclude features with missing values within more than
80% of all the samples; (ii) to fill the zero with the 1/10 of
minimum abundance; and (iii) to normalize data by total-sum
scaling (TSS) for 16S data. For metagenomics data input,
OBMeta will produce gene abundance with transcripts per
million (TPM) normalization using Salmon. This automatic
filtering procedure can improve the statistical power and pro-
vide more robust results for downstream analysis. In practice,
users have the flexibility to decide the extent to which missing
values should be filtered. Subsequently, they can apply further
normalization using the median of ratios method in DESeq2,
rarefying to the minimum library size, or utilizing the TSS.

3.1.2 Standardized analysis for local datasets

This module allows users to analyze their own datasets in
four steps including feature analysis, diversity analysis, func-
tional analysis, and network analysis. In the feature analysis
section, the OTU tables from marker gene or unigene can be
assigned to different taxonomic level before conducting com-
parisons. The overview of microbial features is visualized as
stacked bar plots (Fig. 2A). OBMeta provides nonparametric
univariate analysis by default for differential feature analysis
(Kruskal-Wallis test, Supplementary Fig. S3), with other alter-
native options including LEfSe (Paulson et al. 2013),
ANCOMBC (Lin and Peddada 2020), and DESeq2 (Love
etal. 2014).

The Firmicutes/Bacteroidetes (F/B) ratio is widely consid-
ered as an important marker of intestinal homeostasis
(Stojanov ef al. 2020). Increased F/B ratio is regarded as a po-
tential signature in obesity (Magne et al. 2020). So OBMeta
offers the F/B ratio comparison among different groups
(Fig. 2B). In addition, the alpha-diversity is calculated at dif-
ferent taxonomic levels using Shannon index and Simpson in-
dex, which emphasizes the richness component and evenness
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Figure 1. The workflow and functional features of OBMeta.
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Figure 2. Outputs of the example datasets from “My project” module of OBMeta. (A) A stacked bar plot of the relative abundance of gut microbiome at
the genus level. (B) The Firmicutes/Bacteroidetes ratio of each group. (C) A bar plot of the Shannon index based on genus profile. (D) A bar plot of the
Simpson index based on genus profile. (E) The ordination plot based on the Bray—Curtis distance at genus level using principal coordinate analysis (PCoA).

(F) The ordination plot based on the Bray—Curtis distance at genus level using

nonmetric multidimensional scaling (NMDS). (G) A bar plot of KO modules

with significant LDA score (>2) in LEfSe analysis (top 50 most significant modules). (H) A bar plot of functional pathways with significant LDA score

[LogTO(LDA) > 2] in LEfSe analysis (top 50 most significant pathways). () The

co-abundance network from Spearman’s correlation analysis based on the

top 30 most abundant genera for each group. (J) The box plots of the network properties including degree, closeness, betweenness, and eigenvector.

component of diversity (Fig. 2C and D). The beta-diversity
analysis provides two common distance measures (Bray—
Curtis distance and Jaccard distance), which are represented
by 2D ordination plots based on principal coordinate analysis
(PCoA) or nonmetric multidimensional scaling (NMDS)
(Fig. 2E and F). The corresponding statistical significance is
assessed using ANOSIM test (Supplementary Fig. S4).

In the functional analysis, OBMeta predicts the functional
profiles (KO modules and pathways) for 16S rRNA data or
metagenomics data. Nonparametric univariate analysis and
linear discriminant analysis (LDA) effect size (LEfSe) (Segata
et al. 2011) method are applied to identify the significant fea-
tures respectively, and the example outputs from LEfSe were
presented in Fig. 2G and H.
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In the microbial community, ecological interactions be-
tween constituent taxa are vital in determining the overall
structure and function of the community in host health and
disease (Loftus et al. 2021). Also, the microbial composition
varies significantly between individuals raising the question
whether there is a core microbiome that produces main effect
with respect to the healthy and diseased states. To disclose the
core compositions in the gut microbes, the network analysis
module is applied to construct the bacterial association net-
work and calculate the network topological properties for
each group based on their different taxonomic levels. The net-
work nodes are colored according to the network modularity
and the node sizes are proportionated with the degree
(Fig. 21). The network properties (degree, closeness, between-
ness, and eigenvectors) are compared using the Wilcoxon
rank-sum test (Fig. 2J).

3.2 Cross-project validation

3.2.1 Cross-project comparison and validation

The cross-project validation module allows users to identify
the consistent microbial features from different comparisons
in the curated database. The curated database now includes
234 comparisons classified by phenotypes (case versus con-
trol) and intervention strategies (case with intervention versus
case without intervention/before intervention versus after in-
tervention) from a total of 90 projects in obesity, T2D, and
NAFLD. Users can search similar projects according to the
disease type, intervention strategy, and other filtering condi-
tions including age, gender, species type, sample type, and se-
quencing platform.

Similarly, there are four steps of automated statistical
analysis. In the feature analysis, OBMeta evaluates the consis-
tent variation of taxa using CS and WCS (Fig. 3A), composi-
tional proportion calculation using stacked bar plot (Fig. 3B),
and Sankey network (Fig. 3C) at different taxonomic levels.
In the diversity analysis, OBMeta presents the cross-project
comparison of the F/B ratio (Fig. 3D) and alpha diversity
(Fig. 3E). In the functional analysis, OBMeta summarizes the
pathways with significant LDA scores [loglO(LDA) > 2,
P <0.05] in each project (Fig. 3F). In the network analysis,
OBMeta calculates the network properties based on the top
30 most abundant taxa (Fig. 3G). These multidimensional
comparisons help to efficiently identify the consistent micro-
bial signatures for obesity-associated metabolic diseases.

3.3 Advanced validation

3.3.1 Advanced validation via multi-disease and multi-
intervention comparisons

Obesity is closely associated with other metabolic diseases,
and various medical, nutritional, or physical interventions
have been conducted targeting the gut microbiota. Therefore,
OBMeta offers multi-disease and multi-intervention evalua-
tions of varied taxa in the module of advanced validation.
The own project and selected projects for cross validation will
be integrated as a whole by default to compare with other
phenotypes (Fig. 4A) or interventions (Fig. 4B).

OBMeta is designed flexibly that allows users to stop or re-
start their analysis in each module. If users do not have their
own datasets for analysis and validation, publicly available
datasets within OBMeta are also valuable for microbial signa-
ture analysis of a certain phenotype or intervention.

3.4 Case study |

To illustrate the utility of OBMeta, we chose a publicly avail-
able project of an animal experiment (PRJNA601832). This is
a study on the beneficial effect of Neohesperidin (Neo, a natu-
ral polyphenol abundant in citrus fruits) in obesity using 8-
week-old male wildtype (C57BL/6]) mice. Fecal samples were
collected for 16s amplicon sequencing analysis after 12-weeks
of normal diet (ND), high-fat diet (HFD), and high-fat diet
plus Neo (HFD + Neo). Two pairwise comparisons were con-
ducted (HFD versus ND and HFD + Neo versus HFD) to val-
idate the gut dysbiosis of obese mice and effects of Neo
intervention, respectively.

In the feature analysis section of “My project” module, we
found that the phylum Firmicute significantly increased and
Bacteroidetes decreased in the HFD group while Neo inter-
vention can restore these microbial disturbances to some ex-
tent (Fig. 2A). The comparative analysis further showed that
Leuconostoc, Faecalibaculum, uncultured bacterium, Dubosiella,
Globicatella, and Candidatus arthromitus were the top differen-
tial genera among three groups (Supplementary Fig. S3). In the
diversity analysis section, the Firmicutes/Bacteroidetes ratio was
significantly increased in the HFD group (Fig. 2B). Alpha diver-
sity indices (Shannon and Simpson index) were obviously de-
creased in the HFD group compared to the ND and HFD + Neo
groups (Fig. 2C and D). The community structure also signifi-
cantly varied according to the ordination plots (Fig. 2E and F)
and ANOSIM test (Supplementary Fig. S4). In the functional
analysis section, the significant KO modules and functional path-
ways were provided in each group (Fig. 2G and H). In the net-
work analysis section, the network plot indicates the core
bacterial connections for each group (Fig. 2I). For example, the
beneficial genus Akkermansia was positively correlated with
Dubosiella in the ND mice while was positively correlated with
Streptococcus in the HFD mice. The comparison of network
properties also showed the degree and eigenvector were signifi-
cantly decreased in the HFD network which indicated less con-
nections at the genus level, while their closeness was significantly
increased in HFD network (Fig. 2]).

Furthermore, to validate the microbial features induced by
high fat diet (HFD versus ND), we selected three more similar
projects (Supplementary Table S2) to evaluate their consistent
variation among different projects. As shown in Fig. 3A, three
genera were consistently and significantly increased (e.g.
Dubosiella and Erysipelatoclostridium) as well as seven gen-
era were decreased (e.g. Eubacterium and Bacteroides) in the
high-fat-diet mice of more than three projects. The stacked
bar plot indicated the relative expressions of microbes specifi-
cally in each comparison (Fig. 3B). We can find Dubosiella
and Lactobacillus were enriched in all comparisons. The
Sankey network demonstrated the consistently varied genera
and their taxonomic classification (Fig. 3C). In the diversity
analysis, the Firmicutes/Bacteroidetes ratio showed consis-
tently increased in selected comparisons (Fig. 3D) and signifi-
cantly decreased alpha diversity indicated by Shannon and
Simpson indices in both own project and PRJNA761909
(Fig. 3E). The function analysis further showed that the path-
ways Ko00908 (zeatin biosynthesis), Ko04974 (protein diges-
tion and absorption), and Ko04210 (apoptosis) were
consistently decreased in four projects (Fig. 3F). The network
analysis indicated that the overall degree of gut microbial con-
nections was consistently increased in the ND group
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Figure 3. Outputs of the cross-project validation using the example comparison in “Phenotype” classification. (A) Consistency heatmap of the

significantly changed bacteria at the genus level among the selected projects. The heatmap showed all phyla that significantly varied in at least 3 projects
with the consistency score more than 0.6. (B) The stacked bar plot of the relative abundance of top 10 abundant genera and others (the left panel) and the

consistently varied genera (the right panel). Local comparison was labeled with #. (C) Sankey network of the consistently varied genera that met the
defaulted conditions. (D) The bar plot of the fold changes of the Firmicutes/Bacteroidetes ratio among different projects. It is colored based on the log2

transformation of P-value in the comparison. (E) The box plots of alpha diversity (Shannon and Simpson indices based on the genus profile) in each group.

(F) The heatmap of the significant pathways [log10(LDA) > 2, LEfSe analysis] in any one of the selected projects. *, P< 0.05 (G) The heatmap of the
network property (degree) in each group based on the top 50 most abundant genera.
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Figure 4. Example outputs of the advanced validation. (A) Consistency heatmap of the significant phyla between obesity and NAFLD. (B) Consistency
heatmap of the significant phyla between the drug (natural extracts) and diet intervention with positive effects on obesity.

(Fig. 3G). Finally, we selected projects of NAFLD for cross-
phenotype validation. Interestingly, the genera Muribaculum
and uncultured Bacteroidales bacterium were consistently
and significantly decreased in both obesity and NAFLD
(Fig. 4A).

3.5 Case study Il

Recent studies have shown that the gut microbial compositions
and functions were significantly altered after bariatric surgery in
severe obesity and this may be associated with its beneficial
effects. Here, we collected three independent clinical studies on
the microbial feature analysis following bariatric surgery that con-
sisted of five inter-group comparisons according to the different
time points in “Cross-project validation” module (Supplementary
Table S2 and Supplementary Fig. S5). Following the analysis of
“Cross-project validation” module, we identified that four genera

Veillonella, Akkermasia, Fusobacterium, and Haemophilus were
consistently and significantly increased after surgery within at
least three comparisons (Supplementary Fig. SSA-C). Among
which, Veillonella, Akkermasia, and Fusobacterium were also
identified as a common microbial feature following surgery across
multiple studies (Fouladi et al. 2021). Moreover, the Firmicutes/
Bacteroidetes ratio was stable without significant changes
while alpha diversity indices were recovered after surgery
(Supplementary Fig. SSD and E). The function analysis further
showed seven consistently downregulated metabolic pathways
[e.g. Ko00785 (lipoic acid metabolism), Ko00600 (sphingolipid
metabolism), and Ko00430 (taurine and hypotaurine metabo-
lism)] and two upregulated metabolic pathways [i.e. Ko03010 (ri-
bosome) and Ko0052 (galactose metabolism)] in five
comparisons after surgery (Supplementary Fig. SSF). The network
analysis of degree showed that Bacteroides, Subdoligranulum,
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Faecalibacterium, and Balutia were consistently prevalent in the
networks after surgery (Supplementary Fig. SSF). More interest-
ingly, we chose another group of metagenomics studies on drug
intervention for cross-intervention validation, and further con-
firmed that Akkermasia and Blautia were consistently increased
or decreased after different intervention strategies (Fig. 4B).

4 Discussion

OBMeta is developed with comprehensive capabilities includ-
ing comparative metagenomics analysis, cross-project valida-
tion, cross-phenotype, and cross-intervention comparisons.
To the best of our knowledge, this is the first versatile tool
comprising metagenomics data processing, comparative
analysis, co-abundance network comparison, and multidi-
mensional validation, which aims to identify microbial fea-
tures and biomarkers of obesity-associated metabolic
diseases.

With increasing high-quality public metagenomics datasets
from studies of metabolic diseases, researchers have started to
integrate independent public datasets/projects with the same
phenotype or intervention to explore the consistent microbial
signatures for validation. For example, several 16S rRNA se-
quencing studies were integrated to evaluate the microbial
changes of beneficial diets (peach, wheat, quinoa, barley,
cherry, raspberry, and apple) in healthy and obese animal
models (Garcia-Mazcorro et al. 2020). In addition, Fouladi
et al. (2021) have characterized robust and consistent micro-
bial signatures across multiple projects with obese patients af-
ter Roux-en-Y Gastric bypass (RYGB) surgery using their
own and existing sequencing data. OBMeta can automatically
conduct  cross-project, cross-phenotype, and  cross-
intervention comparisons, facilitating the identification and
validation of obesity-associated microbial features more accu-
rately and efficiently.

Over the past decade, several web-based metagenomics
comparative tools have been developed to contribute the ex-
ploration of gut microbial features and biomarkers of differ-
ent diseases. EBI-Metagenomics (Hunter et al. 2014), VMPS
(Huse et al. 2014), and MG-RAST (Wilke et al. 2016) are de-
veloped primarily for raw sequence processing and annota-
tion, they also provide limited statistical methods and
visualizations. Busybee (Schmartz et al. 2022) is a new server
for metagenomic data analysis in the form of assembled con-
tigs or long reads. For single project exploration of compara-
tive metagenomics, the METAGEN-assist (Arndt ef al. 2012)
and Microbiome-Analyst (Lu et al. 2023) are representative
tools comprising both univariate and multivariate statistical
selections. Microbiome-Analyst 2.0 also integrates with more
newly developed statistical algorithms, functional annotation
and visualization, and even allows users to upload multiple
comparisons for potential biomarker identification. Compared
to Microbiome-Analyst, OBMeta evaluates the consistent or in-
consistent alterations of gut microbial compositions and differen-
tial expressions in an efficient way by integrating public datasets
of obesity-related metabolic diseases. More details of existing
programs are summarized and compared in Supplementary
Table S4.

The limitations of the current version of OBMeta deserve
to be mentioned. First, in addition to obesity, T2D and
NAFLD, other obesity-associated diseases like hypertension
and hyperlipidemia which could also be associated with gut
dysbiosis were not included due to the limited number of

Xu et al.

public accessible studies. So far, we have included 4283 sam-
ples spanning 90 projects, however, the curated database may
not cover all the associated datasets available in the public
datasets. In the future, our team will continually update more
well-designed projects and obesity-associated diseases to en-
large the curated database. It is also highly recommended that
users may contribute their own projects or notify us any pub-
licly available projects of interest through webserver link.
Besides, more new statistical algorithms will be integrated
into OBMeta for biological interpretation. Ultimately, while
the current OBMeta primarily addresses metabolic diseases
related to obesity, the bioinformatic framework of integrating
a specialized data analysis pipeline with a curated database
for meta-analysis serves as a valuable model for other diseases
benefiting from the growing availability of public resources in
metagenomic studies, such as gastrointestinal cancers.

5 Conclusion

OBMeta is the first comprehensive web-based tool to analyze
and validate the gut microbial signatures and biomarkers of
obesity-associated metabolic diseases by streamlining the pro-
cess of single-project analysis, cross-project validation, cross-
phenotype, and cross-intervention comparisons.
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