
Nucleic Acids Research , 2024, 52 , D552–D561 
https://doi.org/10.1093/nar/gkad830 
Advance access publication date: 11 October 2023 
Database issue 

SingPro: a kno wledg e base pro viding single-cell prot eomic 

data 

Xichen Lian 

1 , 2 , 3 ,† , Yintao Zhang 

1 ,† , Ying Zhou 

1 , 4 ,† , Xiuna Sun 

1 , Shijie Huang 

1 , Haibin Dai 1 , * , 

Lianyi Han 

2 , * and Feng Zhu 

1 , 3 , * 

1 College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 
310058, China 
2 Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai 315211, China 
3 Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future 
Digital Healthcare, Hangzhou 330110, China 
4 State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of 
Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang 
University, Hangzhou 310000, China 
* To whom correspondence should be addressed. Tel: +86 18989466518; Fax: +86 57188208444; Email: zhufeng@zju.edu.cn 
Correspondence may also be addressed to Lianyi Han. Email: hanlianyi@ipm-gba.org.cn 
Correspondence may also be addressed to Haibin Dai. Email: haibindai@zju.edu.cn 
† The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors. 

Abstract 

Single-cell proteomics (SCP) has emerged as a po w erful tool f or detecting cellular heterogeneity, offering unprecedented insights into biological 
mechanisms that are masked in bulk cell populations. With the rapid advancements in AI-based time trajectory analysis and cell subpopulation 
identification, there exists a pressing need for a database that not only provides SCP raw data but also explicitly describes experimental details 
and protein expression profiles. However, no such database has been a v ailable y et. In this study, a database, entitled ‘SingPro’, specializing 
in single-cell proteomics was thus developed. It was unique in (a) systematically providing the SCP raw data for both mass spectrometry - 
based and flow cytometry -based studies and (b) explicitly describing experiment al det ail for SCP study and expression profile of any studied 
protein. Anticipating a robust interest from the research community, this database is poised to become an in v aluable repository f or OMICs-based 
biomedical studies. Access to SingPro is unrestricted and does not mandate a login at: http:// idrblab.org/ singpro/ . 
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Introduction 

Single-cell proteomics (SCP) has emerged as a powerful tool
for detecting cellular heterogeneity, offering unprecedented in-
sights into biological mechanisms that are masked in bulk
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Figure 1. The flowchart of two t ypical experiment al procedures adopted in single-cell proteomic (SCP) analysis, including mass spectrometry -based and 
flow cytometry -based SCP analyses. For mass spectrometry -based SCP, single cell is ( a1 ) first isolated, ( a2 ) then lysed, digested & labeled and ( a3 ) 
finally quantified based on MS data & analyzed using pathway enrichments, expression differentiation, and so on. For flow cytometry -based SCP, all cells 
are ( b1 ) first treated into single-cell suspension, ( b2 ) then stained with antibody, and ( b3 ) finally quantified based on FC data & analyzed using cell 
subpopulation identification, time trajectory interference, and so on. 
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dentify disease-specific cell subpopulation and monitor sig-
al transduction ( 4–7 ); mass spectrometry -based one (MS-
CP) quantifying over 600 proteins per cell but with limited
hroughput and relatively lower sensitivity when comparing
o FC-SCP, which makes it suitable for identifying new mark-
rs and tracking rare cell populations ( 8–11 ). Both techniques
re powerful and have been frequently adopted to measure
he time of delivery ( 12 ), uncover the heterogeneity among
ells ( 13 ,14 ), realize the high-content drug screening ( 15 ), and
o on. 

However, the extremely-high experimental cost and time-
onsuming analytical process limit the availability of the pub-
icly accessible SCP data ( 16–18 ). An SCP study asks for so-
histicated data processing and analysis procedure, and the
aw data should be provided to select suitable process ( 19–
1 ). Meanwhile, it is extremely difficult to conduct SCP-
ased meta- and multiomic-analysis if the corresponding raw
CP data are unavailable ( 22–25 ). For example, the integra-
ion of SCP and single-cell transcriptomics (SCT) data is re-
garded as revolutionary for the understandings of biological
characteristics / dynamics ( 26 ,27 ), but it is greatly hampered
by the unequal amount of raw data between SCP and SCT
( 28 ). With the rapid advancements in AI-based time trajec-
tory analysis and cell subpopulation identification, there ex-
ists a pressing need for a database that not only provides SCP
raw data but also explicitly describes experimental details and
protein expression profiles ( 29–32 ). 

So far, several proteomics-related databases have been de-
veloped ( 33–42 ). Some of them provide storage and download
of mass spectrometry -based bulk proteomic data, such as Pro-
teomeXchange ( 33 ), PRIDE ( 34 ), and iProX ( 36 ); some others
are public repositories providing the experimental data gener-
ated using cytometry technique to facilitate cell sorting and
immunophenotyping, such as FlowRepository ( 39 ) and Imm-
port ( 40 ). There are also several R packages that can be used to
obtain SCP data, such as scpdata ( 43 ). However, none of them
are dedicated to provide SCP raw data for either MS-based
or FC-based technique. Moreover, the existing databases are
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Figure 2. A typical SingPro page describing the general information of a single-cell proteomics study. T he inf ormation of each study & dataset is explicitly 
provided in the upper section, which includes: project ID, project title, description, research type, sample type (single-cell / small-cell-population), 
reference and external linkage of well-established data processing & analysis tools. Project files are established in the following section, including: file 
type, download linkage (for instant download of individual file), download ID and the corresponding staining panel. The user can select the desired file(s) 
in the c hec kbox and click ‘ Package Download ’ to activate the batch download. For user who want to batch download the files from different studies, a 
data download tool is also provided for enabling the download of multiple files from various studies. 
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specialized in offering the scientific storage of proteomic data,
but lack of description on experimental details (such as study
procedure, sample label, annotated cell type, and method for
single-cell sorting and preparation) and absent of application
of data processing and analysis, which makes it difficult for re-
searcher, especially for those without a background in bioin-
formatics, to intuitively use the provided data and compre-
hend the protein expression profiles. Thus, a database that is
specialized in providing SCP raw data and the explicit descrip-
tion on experimental details and expression profiles is urgently
needed. 

To address this gap, we developed ‘SingPro’, a database
tailored for single-cell proteomics. First , a systematic litera-
ture review was conducted, which resulted in a total of 204 

studies (129 case-control, 21 multi-class and 54 single-arm 

studies) containing the SCP raw data of > 625 million cells 
and > 16 000 proteins. Second , the experimental details (anti- 
body panel, study procedure, sample label, annotated cell type,
method for single-cell sorting and preparation, etc.) were man- 
ually retrieved and standardized based on the original publi- 
cations. Third , all raw data were processed and analyzed us- 
ing well-established tools to measure the expression profiles 
among sample groups for each protein. Finally , a user-friendly 
interface with quick search utility was constructed to facilitate 
the use of SCP data. All in all, SingPro database is unique in 

(a) systematically providing the SCP raw data for both mass 
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Figure 3. A typical SingPro page describing the quantification process for flow cytometry -based SCP. Each page is carefully organized to three sections: 
Biological Information (studied species, experiment tissue / organ, analyzed cell type, pathological / physiological conditions, etc.), Single-cell Proteomic 
Quantification (applied quantification approach, experimental platform, methods for data processing and analysis, etc.), and Protein Panel (fluorochrome, 
protein marker, external link, clone, category (surface / intracellular) and panel number). 
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pectrometry -based and flow cytometry -based studies and (b)
xplicitly describing the experimental detail of SCP studies
nd expression profiles of studied proteins. Due to the broad
nterest from research community, this database is highly ex-
ected to be a valuable repository facilitating OMIC-based
iomedical studies. 

actual content and data retrieval 

ystematic collection of the single-cell proteomic 

ata 

he SingPro’s single-cell proteomic data were systematically
ollated as outlined below. First , comprehensive literature re-
iew on single-cell proteomic data was conducted by search-
ing PubMed using such keyword combinations as: ‘mass cy-
tometry + proteomics’, ‘flow cytometry + proteomics’, ‘single-
cell + proteomics’, ‘single-cell + mass spectrometry’, ‘cytom-
etry time-of-flight’, which resulted in a total of 5780 articles.
Second , detailed information of each single-cell proteomic da-
tum (such as studied species, disease indications, clinical sta-
tus & experimental procedure) was systematically retrieved
from original publications, and unified & crosslinked to well-
established databases. Finally , a total of 204 studies (129 case-
control, 21 multi-class & 54 single-arm studies) containing
the SCP raw data of > 625 million cells and > 16 000 proteins
were collected. As a result, SingPro provided SCP data from
human and various model organisms (such as Mus musculus ,
Xenopus laevis and Macaca mulatta ) and tissues / organs (such
as peripheral blood, kidney and breast). Additionally, the
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Figure 4. A typical SingPro page describing quantification process of mass spectrometry -based SCP. Each page is carefully organized to four sections: 
Studied Single-cell Type (studied species, cells, pathological / ph y siological condition, etc.), Sorting Method (method name & its application detail), 
Preparation Method (method name & its application detail) and Quantification Process (applied quantification approach, quantification strategy, 
e xperimental platf orm, etc.). 
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curated data cover an expansive range of diseases, encompass-
ing not just cancer but also conditions like infections, digestive
system ailments, and more. 

General information of each SCP dataset in SingPro

For each SCP study, its general information was shown in the
upper section of the corresponding SCP webpage, such as:
project ID, project title, descriptions, research type, reference
links to the original publications, data processing, and analyt-
ical tool (as illustrated in Figure 2 ). Two of the commonly
adopted research types in SCP included cell subpopulation
identification (which were applied to discover new marker
protein ( 44–46 )) and time trajectory interference (which had
been adopted to reveal signal pathway and the mechanism un-
derlying disease progression ( 47 ,48 ). To make it convenient
for users to identify the ideal data for their own research pur-
poses and select suitable analytical algorithm, various research
types of the collected SCP study were summarized, which
were cell population identification, time trajectory interfer-
ence (with clarified timepoints), comparative study (with de-
scription of different data groups) and novel method (with de- 
scription of the experimental procedures and equipment inno- 
vations). Additionally, SingPro introduces and links to promi- 
nent data processing tools like ANPELA ( 49 ) and Cytobank 

( 41 ), streamlining the process for users eager to repurpose the 
data. 

Describing the quantification process of a SCP 

dataset 

For each flow cytometry -based SCP study, its biological in- 
formation, such as species, tissue, cell type and condition of 
the study were provided in SingPro database. According to 

the type of antibody, FC-SCP studies can be further divided 

into two quantification methods: fluorescence-based flow cy- 
tometry using fluorochrome labels, and cytometry by time 
of flight (CyTOF) using heavy metal isotopes label. For each 

method, various data processing and analysis tools were de- 
veloped, such as CA T ALYST and CytoSpill were compensa- 
tion tools specially for CyTOF. To enable users to choose sub- 
sequent analysis methods appropriate for that data, SingPro 
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Figure 5. A typical SingPro page describing the expression variations of studied protein among multiple groups using flow cytometry -based SCP data. 
All proteins in staining panel are included into the drop-do wn-bo x where a user can select the protein of interest. The P -value of the selected protein 
bet ween t wo groups is calculated and provided. 
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rovided quantification process description, such as quan-
ification methods, instrument, data processing method and
ata analysis method adopted in the original publications.
he staining panel was also provided which allowed the re-
earchers to directly determine whether the study contained
heir preferred proteins or whether the desired clustering
ould be achieved. The staining panel of each study contains
nformation such as protein name, external link to uniport,
uorochrome / metal isotopes, category (intracellular or sur-
ace protein) and clone number (as shown in Figure 3 ). 

For each mass spectrometry -based SCP study, the cell
ype information was explicitly described, including cell line
ame, species, organism, condition (healthy or specific dis-
ases), and external linkage to other well-established database,
uch as Cellosaurus ( 50 ). One of the major difficulties of
he MS-SCP was its miniscule amount of proteins in each
ell, proper sorting and subsequence preprocessing meth-
ds were essential for preserving the protein from diges-
ion loss and surfaces adsorption ( 51 ). Therefore, the single-
cell sorting and preprocessing method of each dataset were
manually collected and explicitly described in SingPro, such
as CelleONE ( 52 ), nanoPOTS ( 53 ) and other popular pre-
processing platforms. Furthermore, SingPro also described
quantification methods used, such as LC-MS / MS (liquid
chromatography-mass spectrometry), HPLC-FAIMS-MS / MS
(high performance liquid chromatography-field asymmetric
ion mobility spectrometry-MS), and CE-ESI-HRMS (capillary
electrophoresis-electrospray ionization-high resolution MS),
quantification strategy (dimethyl labeled, TMT labeled, label-
free, data acquisition, etc.) and the instrument to facilitate
the selection of appropriate analytical algorithms (shown in
Figure 4 ). 

SCP data processing and protein expression 

profiles 

For flow cytometry -based SCP data, all data were imported
into FlowJo ( 54 ) where the quality control was conducted
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Figure 6. A typical SingPro page describing the expression variations of studied protein among multiple groups using mass spectrometry -based SCP 
data. Particularly, the volcanic map between two groups is calculated to provide the differential expression profiles for proteins (the horizontal coordinate 
indicates the log2 fold change (Log 2 FC) and vertical one denotes log P -value (Log P ); the proteins are colored in red and blue based on their Log 2 FC & 

P -v alue (L og 2 FC > 1 & P -v alue < 0.05 and L og 2 FC ← 1 & P -v alue < 0.05, respectiv ely). T he differentially e xpressed proteins can be selected, and the 
P -value of selected protein between two groups is calculated and provided. 
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sing FlowAI ( 55 ). After removing the anomalies, data were
hen manually gated for removing dead cells & other atyp-
cal events, and scaled with the arcsine transformation ( 56–
9 ). The data were grouped according to the original publi-
ation, the statistical correlations of protein expression differ-
nce among groups were determined using two-way student
 -test, and P -values < 0.05 were considered statistically signif-
cant. The analytical result was displayed on the page in the
orm of box diagrams, user can select all the proteins in the
yeing panel through the drop-down box to view the expres-
ion level between groups (as shown in Figure 5 ). 

For mass spectrometry -based SCP data, the raw data were
rocessed using MaxQuant (version 2.4.0.0) ( 60 ). TMT chan-
el, digestion enzymes, missed cleavage, variable modifica-
ions and many other parameters were set by referring to
he original publication. Both peptide and protein were fil-
ered with false discovery rate < 1% to ensure the identifica-
ion confidence. The corrected reporter ion intensities from

axQuant were imported into Perseus ( 61 ). Reverse and con-
aminant proteins were filtered out and proteins containing
ver 70% valid values in each sample were considered. All
ata were then log-transformed and missing values were im-
uted based on standard distributions by setting width and
ownshift to 0.3 and 1.8, respectively ( 62 ). Fold changes and
wo-way student t -tests were applied to indicate the signif-
cant differences by setting fold change and P -value to > 2
nd < 0.05, respectively). Since MS-SCP quantified much more
roteins than FC-SCP, and only few of the thousand’s proteins
etected by MS-SCP were differentially expressed, SingPro
rovided the volcano maps to show which protein had differ-
ntial expressed, and then the expression level of those pro-
eins among multiple groups was shown using box maps (il-
ustrated in Figure 6 ). 

tandardization, access and download of the SCP 

ata 

o make the access and analysis of SingPro data convenient
or the users, all the collected data were carefully cleaned up
nd then systematically standardized. These standardizations
ncluded: (a) all proteins, cell lines, species, and diseases in
ingPro were cross-linked to well-established databases such
s uniprot ( 63 ), Cellosaurus ( 50 ) and NCBI Taxonomy ( 64 );
b) all diseases were standardized using the WHO ICD-11
 65 ). SingPro provided a user-friendly interface that can con-
eniently browse and search data, and the quick search utility
as provided to allow users to find desired single cell pro-

eomic data in main search frame or in a pull-down menu
ased on experiment accession numbers and the sample pa-
ameters, including quantification method, disease indication,
pecies, tissue, marker proteins, etc . All data could be down-
oaded (including the MaxQuant analysis results, the raw
ata, and many other related files, such as the protein se-
uences in FASTA formats, and compensation matrix). Users
an download all these data directly from the corresponding
age or download and edit the desired file list then using the
atch download tool constructed and provided by SingPro
atabase. 

onclusion and prospectives 

n this study, a new database, named SingPro, was intro-
uced to provide comprehensive single-cell proteomic (SCP)
data. It was specialized in (a) systematically offering SCP raw
data for both mass spectrometry - and flow cytometry -based
studies and (b) explicitly describing experimental details of
SCP studies and expression profiles of proteins. With the lat-
est breakthrough of high-sensitivity mass spectrometry tech-
niques, there will be an exponentially increasing amount of
single-cell proteomic data. Therefore, SingPro will be updated
in a timely fashion. Popular analysis and visualization tools,
such as cell subpopulation analysis based on different cluster-
ing methods, time trajectory inference and pathway enrich-
ment analysis will be added to keep pace with ongoing re-
search. Due to the broad interest from research community,
SingPro was highly expected to be a functional and popu-
lar complement to the existing molecular biological databases
( 63 ,66–75 ) in facilitating current OMIC-based studies. 

Data availability 

All single-cell proteomics data can be viewed, accessed, and
downloaded from SingPro, which is freely accessible with-
out any login requirement by all users at: http://idrblab.org/
singpro/. 
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