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BSTRACT 

arg et discover y is one of the essential steps in 

odern drug development, and the identification 

f promising targets is fundamental for develop- 
ng first-in-class drug. A variety of methods have 

merged for target assessment based on druggabil- 
ty analysis, which refers to the likelihood of a tar- 
et being effectively modulated by drug-like agents. 

n the therapeutic target database (TTD), nine cat- 
gories of estab lished drug gability c haracteristics 

ere thus collected for 426 successful, 1014 clini- 
al trial, 212 preclinical / patented, and 1479 literature- 
eported targets via systematic review. These charac- 
eristic categories were classified into three distinct 
erspectives: molecular interaction / regulation , hu- 
an system profile and cell-based expression vari- 

tion . With the rapid progression of technology and 

oncer ted effor t in drug discovery, TTD and other 
atabases were highly expected to facilitate the ex- 
lorations of druggability characteristics for the dis- 
overy and validation of innovative drug target. TTD 

s now freely accessible at: https:// idrblab.org/ ttd/ . 

fi
d
b

 To whom correspondence should be addressed. Tel: +86 189 8946 6518; Email:
orrespondence may also be addressed to Yuzong Chen. Email: chenyuzong@s
orrespondence may also be addressed to Yunqing Qiu. Email: qiuyq@zju.edu.

 The authors wish it to be known that, in their opinion, the first two authors should b

C The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Ac
his is an Open Access article distributed under the terms of the Creati v e Commons 

http: // creati v ecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re
s properly cited. For commercial re-use, please contact journals .permissions@oup .co

ber 2023
RAPHICAL ABSTRACT 

NTRODUCTION 

arget discovery is one of the essential steps in modern 

rug de v elopment, and the identification of promising tar- 
ets lays the foundation for the successful de v elopment of 
rst-in-class drug ( 1 ). To ensure the success and efficiency of 
rug de v elopment, the quality of the selected target needs to 

e assessed during the early stage of drug discovery, which 
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has been frequently conducted by evaluating the druggabil-
ity of target ( 2–4 ). The druggability of a target refers to the
likelihood of target being effecti v ely modulated by drug-
like agents with various evaluation methods proposed ( 5–
7 ). For example, the presence of suitable binding poc k et is
crucial for the target’s druggability, which is known as one
standard procedure in target selection ( 8 ); the human sys-
tem profiles such as human similarity proteins and affiliated
pathways have been explored for characterizing target drug-
gability, with their ability to dif ferentia te the targets of rapid
(speedy) and slow (non-speedy) clinical de v elopment pro-
cess ( 9 ). Moreov er, div er se cell-based differ ential expr essions
of tar g ets are f ound inf ormati v e for identifying ne w targets
that play a crucial role in disease ( 10 ). 

Notably, the target assessment using single druggabil-
ity characteristics is often insufficient, and comprehen-
si v e e valuation of multiple druggability characteristics is
a more helpful approach ( 9 ). Ther efor e, r ela ted da tabases
are needed to provide comprehensi v e druggability charac-
teristics of targets from multiple perspecti v es. So far, a va-
riety of established databases have been de v eloped to col-
lecti v ely provide drug & target data. Some describe phar-
macological information on drugs, such as DrugBank ( 11 ),
DrugCentral ( 12 ), SuperDRUG2 ( 13 ), DrugMap ( 14 ) and
DRESIS ( 15 ); some others focus on presenting therapeu-
tic targets, such as TTD ( 16 ) and Open Target ( 17 ); the
remaining offer general molecule and bioactivity informa-
tion, such as PubChem ( 18 ), ChEMBL ( 19 ) and Bind-
ingDB ( 20 ). Although these databases have already ac-
cumula ted grea t popularities and substantial impacts on
chemical / biolo gical / pharmaceutical comm unities, the in-
formation of target druggability characteristics have not yet
be covered by any of the existing databases. 

Herein, the ther apeutic tar g et database (TTD) was
thus significantly updated to its 2024 version, which
provided comprehensi v e information on the druggability
characteristics of 426 successful, 1014 clinical trial, 212
preclinical / patented and 1479 literatur e-r eported targets.
Particular ly, such char acteristics wer e of thr ee perspecti v es
(Figure 1 ): molecular inter actions / r egulations , human sys-
tem profiles and cell-based expression variations . Molecular
interactions / regula tions of fered (1 a ) ligand-specific spatial
structures of target in its drug binding pocket, (1 b ) network
properties of target measured based on protein-protein in-
teractions & (1 c ) bidirectional regulations between the mi-
crobiota and therapeutic agents. Human system profiles
provided (2 a ) similarity profile of target to human pro-
teins outside its families, (2 b ) involvements of target in well-
established life-essential pathways & (2 c ) distributions of
target among a variety of organs in human. Cell-based ex-
pression variations described (3 a ) varied expression of tar-
get across cells of dif ferent diseases, (3 b ) dif fer ential expr es-
sions of target induced by exo genous stim uli & (3 c ) modi-
fied expressions of target altered by human endogenous fac-
tors. The statistics of targets & drugs in TTD over the past
decade were provided in Table 1 , and the detailed data on
the major contents integrated into TTD were explicitly de-
scribed in following sections. With the rapid progression in
the techniques of drug discovery, the wealth of druggabil-
ity data incorporated into TTD are expected to establish a
solid f oundation f or the identification of novel targets and
discovery of new therapeutics. TTD is now freely accessible
without any login r equir ement at: https://idrblab.org/ttd/ . 

FACTUAL CONTENT AND DA T A RETRIEVAL 

Due to the importance of target druggability data (as de-
scribed above) in modern drug discovery, therapeutic tar-
get database (TTD) was mainly updated to its 2024 ver-
sion by comprehensi v ely providing three types of drugga-
bility information for each therapeutic target. As shown in
Figur e 1 , compar ed with the pr e vious v ersions, the TTD
2024 updated three major types of druggability: molecu-
lar inter actions / r egulations , human system featur es and cell-
based expression variations . These druggability data were
not covered by any of the previous versions of TTD. Each of
these three types of druggability was further elaborated us-
ing three distinct sub-sections of data, which were explicitly
discussed and described as follows. 

Druggability illustrated by molecular interactions or regula-
tions 

Ligand-specific spatial structure of a target within drug bind-
ing poc k et. The drug binding site of therapeutic target was
usually considered to be indispensable for modern drug dis-
covery ( 21–25 ). The binding pocket structure of established
targets was essential for drug design and lead optimization
( 26 ), and the binding pocket of promising new targets could
further expand the druggable genome and enable develop-
ment of new strategies for targeted therapeutics ( 8 ). Among
the > 80 FDA-approved kinase inhibitors, many of them
wer e inspir ed by the binding pocket structur e of the cat-
alytic domain of kinases ( 27 ). In other words, it is essential
to have the valuable drug-specific spatial structures of stud-
ied target within its drug binding pocket. 

Such structures of drug binding pocket were systemati-
cally collected to TTD using the following procedure. First ,
a comprehensi v e search of all TTD targets in PDB ( 28 )
was realized based on the name and synonyms of the tar-
gets. Second , all retrie v ed structures were carefully checked
to remove false matches, which resulted in > 25 000 tar-
get crystal structures. Third , the availability of drug binding
to these structures was investigated, and the correspond-
ing drugs were identified. Forth , the co-crystal structures
containing both target and its interacting drug were ob-
tained, and the distance between drug and each residue
was calculated based on biopython ( 29 ). All residues that
interacted with drug at a distance of < 5 Å were defined
as the ‘drug binding pocket’ ( 30 ). As shown in Figure 2 A,
the binding pocket information was provided in ligand-
specific manner for any studied target. For certain com-
plex, the pocket residues together with detailed distances
were provided in TTD and highlighted based on their van
der Waals surface calculated by iCn3D ( 31 ). Additional in-
formation (such as structur e r esolution, sequence, and mu-
tation) was also provided in online TTD. As a result, the
ligand-specific binding pockets of 319 successful (targeted
by at least one FDA-approved drug), 427 clinical trial (not
targeted by any approved drug, but targeted by at least one
clinical trial drug), 116 preclinical / patented (not targeted
by any approved / clinical trial drug, but targeted by at least

https://idrblab.org/ttd/
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Figure 1. Three major contents integrated into the TTD 2024. A wealth of data was collected to describe target druggability from three distinct perspecti v es: 
molecular inter actions / r egulations , human system featur es and cell-based expr ession variations . Each perspecti v e was elaborated in detail through three 
different sections of data, which were further explicitly described. 
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ne preclinical / patented drug), 375 literatur e-r eported (tar- 
eted by experimental drugs only) targets were identified 

rom 22 431 complex structures. 

etw ork pr oper ties of tar g et measur ed by pr otein–pr otein
nter actions . Target’s network properties derived from 

omplex connections among numerous protein–protein 

nteractions (PPI) have been extensively employed for 
valuating the target druggability ( 32–36 ). Proteins demon- 
trating high node degrees are posited to exert considerable 
nfluence on network function due to the huge amount of 
nteractions ( 37 ), while proteins exhibiting high between- 
ess centrality are considered pivotal in network commu- 
ication and signaling information flow ( 38 ). A multitude 
f network descriptors have been reported as potential 

ndica tors to dif ferentia te the targets of rapid (speedy) 
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Table 1. Number of drugs and their corresponding therapeutic targets in different versions of TTD over the past decade 

Different versions of TTD published during the past decade 

Statistics of targets and drugs in different 
versions of TTD 2024 2022 2020 2018 2016 2014 

All targets 3730 3578 3419 3101 2589 2360 
Successful targets 532 498 461 445 397 388 
Clinical trial targets 1442 1342 1191 1121 723 461 
Preclinical / patented targets 239 185 155 0 0 0 
Literatur e-r eported targets 1517 1553 1612 1535 1469 1467 
All drugs 39 862 38 760 37 102 34 019 31 614 20 667 
Approved drugs 2895 2797 2649 2544 2071 2003 
Clinical trial drugs 11 796 10 831 9465 8103 7291 3147 
Preclinical / patented drugs 5041 5009 4845 0 0 0 
Experimental drugs 20 130 20 123 20 143 18 923 17 803 14 856 
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and slow (non-speedy) clinical de v elopment process
( 9 ). 

The collection of target’s network properties to TTD
was accomplished in the following manner. First , PPIs with
high confidence score ( ≥0.95) were collected from STRING
database ( 39 ), and a human PPI network consisting of 9309
proteins and 52 713 PPIs was then constructed. Second ,
nine r epr esentati v e networ k properties (including: between-
ness centrality, clustering coefficient, etc. ) were calculated
for each target ( 40 ). As shown in Figure 2 B, a two-layer PPI
network for a target was illustrated, together with a down-
loadable file of the complete human PPI network. As an
outcome of this process, a variety of network properties for
426 successful, 727 clinical trial, 143 preclinical / patented,
and 867 literatur e-r eported targets wer e provided in TTD
2024. 

Bidir ectional r egulations betw een micr obiota and tar g eted
ag ents. The regula tion between microbiota and targeted
agents is complex and bidirectional ( 41 ). On the one hand,
microbiota can modulate bioavailability, bioactivity and
toxicity of drugs; on the other hand, drugs can impact
growth, composition, and function of microbiota ( 42 ). Tak-
ing irinotecan (one medication for treating colon cancer) as
an example, it is metabolized to SN-38 glucuronide by beta-
glucuronidase of gut microbiota, which resulted in the great
elevation of gastrointestinal toxicity ( 43 ), and the selecti v e
inhibition of bacterial beta-glucuronidase showed the po-
tential to alleviate drug-induced toxicities ( 44 ). In other
wor ds, unrav eling such regulations is anticipated to shed
light on the identification of novel therapeutic targets, the
discovery of new therapies and the potential modification
of existing drug prescription methodologies ( 45 , 46 ). 

Bidir ectional r egula tion da ta between microbiota and
targeted drugs were collected to TTD using the follow-
ing procedure. Fir st , systema tic litera tur e r e vie w was con-
ducted in PubMed ( 47 ) using such k eyw ord combinations
as ‘drug + microbiota’, ‘drug + microbe’, ‘drug + micro-
biome’, etc. All retrie v ed literatures were carefully re vie wed,
and the interactions between drugs and microbe were man-
ually recorded. As illustrated in Figure 2 C, all the interac-
tions were classified into two ca tegories: micr obes affecting
drug metabolism & drugs regulating microbe abundance . For
the former interaction type, the detailed information (such
as involved microbial enzymes, metabolic reactions of stud-
ied microbiota, resulting metabolites, and metabolic effects)
was also explicitly described. For the latter type of interac-
tion, the detailed information (such as abundance variation
of microbe, a variety of species origins and specific experi-
mental samples) was further extracted. As a result, a total of
9812 interactions between 663 drugs and 686 microbes were
collected to TTD, which came from 20 phyla, 36 classes, 59
orders, 101 families and 135 genera. 

Druggability characterized by different human system pro-
files 

Similarity profile of target to human proteins outside Its
f amily. Drug candida tes are typically designed to selec-
ti v ely interact with their intended target, and their interac-
tions with other proteins outside target’s biochemical family
should ther efor e be car efully evalua ted a t the early stage of
drug de v elopment ( 48 ). As reported, the target having fe wer
human similarity proteins outside its biochemical family is
commonly regarded to have greater capacity to avoid un-
desired interaction and thus increase the possibility of dis-
co vering drug-lik e molecule ( 9 ). Ther efor e, it is highly de-
manded to have the valuable data on the number of human
similarity proteins outside target’s functional family to as-
sess the off-target collateral interactions ( 9 ). 

As shown in Figure 3 A, such similarity profiles were in-
cluded into TTD. First , the sequences of TTD targets and
all human proteins were extracted from UniProt ( 49 ). Then ,
the protein families to which each protein belonged were ob-
tained fr om InterPr o ( 50 ). For a TTD target, its similarity to
human proteins was calculated using BLAST ( 51–53 ). The
similarity proteins of a target were defined as those with E -
value < 0.005 and outside the protein families of the target.
On the target page, the data of protein name, protein fam-
ily, BLAST identities, and E -values were listed. As a result,
the similarity profile information was made available for 389
successful, 933 clinical trial, 204 preclinical / patented and
1479 literatur e-r eported targets in TTD 2024. 

Involvements of Tar g et in the Well-estab lished Life-essential
Pathways . Targets af filia ting with fewer life-essential path-
ways were reported to have greater likelihood of success,
while those associated with more signaling pathways were
found to increase the chances of undesirable interferences
with other human process ( 48 ). The target-directed toxic-
ity had been identified as originating from the participation
of the targets in potentially harmful pathways ( 1 ). Further-



Nucleic Acids Research, 2023 5 

Figure 2. Druggability of therapeutic target illustrated by molecular interactions and regulations. ( A ) ligand-specific spatial structure of targets in their 
drug binding poc k et . The crystal structur es complex ed with ligands were comprehensi v ely collected for a target, and the residues interacting with drugs at 
a distance of < 5 Å were defined as drug binding pockets and highlighted using their van der Waals surface for each complex. ( B ) network properties of 
tar g et measur ed using pr otein-pr otein inter actions . The human pr otein-pr otein interaction network consisting of 9309 pr oteins and 52 713 interactions was 
constructed based on the STRING data with confidence score ≥0.95, and di v erse networ k descriptors (degree, connecti vity, etc. ) were calculated for each 
target based on PPI network. ( C ) bidir ectional r egulations betw een micr obiota and ther apeutic ag ents . On the one hand, microbiota in di v erse human tissue 
or organs (ey e, lung, or al cavity, etc. ) can alter the bioavailability , bioactivity , and toxicity of therapeutic agent; on the other hand, therapeutic agent can 
also change the abundance and composition of microbiota. 
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or e, in cir cumstances wher e the understanding of drug 

argets’ functions is inadequate, the valuable information of 
arget-af filia ting pa thwa ys can be very inf ormati v e ( 54 ). 

As illustrated in Figure 3 B, the life-essential pathways 
hat TTD targets involved were ga thered. Fir st , all avail- 
ble pathwa y inf ormation f or each target was collected from 

EGG ( 55 ). Second , the target-af filia ted pa thways were 
ouble-checked based on two criteria: ( Ca ) the pathways of 
he studied target should be life-essential for both healthy 

ndividuals and patients, and ( Cb ) the studied targets should 
ccup y an upstr eam position in pathway, and thus are ca- 
able of regulating biological function. Finally , 241 life- 
ssential pathways were included. For a target, all affiliated 

a thways were integra ted to online TTD with the detailed 

a ta of pa thway hierar chy. Mor eover, other targets that be- 
onged to the same pathway were also fully described. All in 

ll, a variety of target-af filia ting life-essential pa thway da ta 

ere made available for 373 successful, 897 clinical trial, 196 

reclinical / pa tented, and 1415 litera ture-reported targets in 



6 Nucleic Acids Research, 2023 

Figure 3. Druggability of therapeutic targets illustrated by human system features. ( A ) Similarity profile of target to human proteins outside its family . The 
degree of similarity between target and all human proteins was calculated using BLAST, and the cutoff of E -values was set to 0.005 (the similar proteins 
of targets were defined as those with E -value < 0.005 and outside those functional families of the targets). ( B ) Involvements of tar g et in the w ell-estab lished 
life-essential pathways . All life-essential pathways involved by a target were described on the TTD website with detailed information provided, such as 
the name, hierarchy & map of, and other targets belonging to these pathways. ( C ) Distributions of target among a variety of tissues / organs in human . The 
expressions of studied target across different tissues / organs were provided in the boxplot format, and detailed data (such as tissue name and various statistic 
values describing the boxplot) were specified. 
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Distributions of tar g et among a variety of tissues or or-
gans in human. The distribution of targets among different
tissues / organs needs to be carefully considered, when as-
sessing the target druggability, as it is widely known that the
wider the target distributions, the greater the concern over
adverse drug reaction ( 1 , 56 ). A previous study on the dis-
tribution of 158 successful targets identified that over 50%
of these targets were distributed in no more than three tis-
sues, indicating the significance of tissue selectivity in target
discovery ( 48 ). 
Considering the substantial discordance in target’s ex-
pression at the le v els of proteins and RNAs ( 57 ), the distri-
butions of TTD targets among various tissues / organs were
determined. A landmark stud y tha t quantified over 12 000
genes across 32 normal human tissues at both protein and
RNA le v els was adopted to fulfill our r esear ch needs ( 57 ).
For a target, the relati v e e xpressions among tissues / organs
were provided, which were displayed in boxplot format to-
gether with the detailed abundances (Figure 3 C). As a re-
sult, the distributions across 32 human tissues of 338 suc-
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essful, 600 clinical trial, 143 preclinical / patented and 920 

iteratur e-r eported targets were provided. 

ruggability reflected by diverse cell-based expression varia- 
ions 

aried expressions of target across different cells of diverse 
iseases. Recent studies had indicated that the heterogene- 
ty among cell types could result in distinct drug responses 
 58 ). For instance, FGFR2-amplified gastric cancer cell 
ines (KatoIII & SNU16) were sensiti v e to AZD4547 (an 

GFR2 inhibitor), while those without FGFR2 amplifica- 
ion (AGS & SNU1) wer e r eported insensiti v e to AZD4547 

 59 ). In other words, understanding the pattern of target 
xpression among cell types is essential for the selection of 
 epr esentati v e cell line models and the understanding of the
echanism underlying drug response or resistance ( 60–64 ). 
Such expression pattern among different cell lines were 

ollected using the following procedure. First , an exhaus- 
i v e re vie w was carried out in GEO ( 65 ) & Expression Atlas
 66 ) employing the k eyw ord combinations of ‘cell line + ex-
ression’, ‘cell type + expression’, ‘cell line + differential 
xpression’, etc. This approach generated a total of 226 

atasets containing the expression profile of thousands of 
r oteins acr oss cell lines. Second , detailed inf ormation f or
ach dataset, including cell type , disease , etc. , was meticu- 
ousl y recorded, w hich resulted in a total of 1742 types of 
ell lines from 7289 samples, spanning 121 disease classes 
s defined by the WHO ICD-11 (such as tuberculosis, skin 

ancer, allergic rhinitis, and ulcerati v e colitis). Third , var- 
ous OMIC data types were processed independently. For 

icroarray data, the original CEL files were downloaded 

nd processed using the RMA function in oligo package 
 67 ) to calculate the gene expression matrix; for RNA-seq 

ata, the raw count data were normalized using DESeq2 

ackage ( 68 ). For a studied target, its varying expression 

e v els across di v erse cell types were visually represented 

as shown in Figure 4 A). In summary, varying expressions 
cross various cell types for 347 successful, 939 clinical trial, 
88 preclinical / patented, and 1371 literatur e-r eported tar- 
ets were provided. 

iffer ential expr essions of tar g et induced by many exog enous 
auses. Different cell types manifest di v erse perturbation 

ignals in response to exo genous stim uli, such as drug ad- 
inistration ( 69 ). For the same stimulus (such as particu- 

ar kinase inhibitor), a variety of cell lines were reported to 

e phenotypically responsi v e, but the transcriptomic pro- 
les among these cell lines after the stimulation (such as 
he treatment by kinase inhibitor) were identified to be ex- 
r emely differ ent ( 70 ). Such perturbation signals were valu- 
ble for providing novel insights into understanding drug 

echanisms of action and identifying potential drug targets 
 70–73 ). 

The target’s expression profiles induced by exogenous 
timuli were collected and provided using the following 

rocedure. Fir st , the dif ferential expression data induced 

y exogenous cause wer e r etrie v ed from GEO ( 65 ) & Ex-
ression Atlas ( 66 ) using the k eyw ord combination of 

cell line + drug’, ‘cell line + exogenous causes’, ‘cell 
ine + therapy’, ‘cell line + environment’, etc. Second , all 
etrie v ed datasets were carefully examined, and the de- 
ailed exogenous stimuli were recorded, which were clas- 
ified into three groups: treatment with drugs , infection by 

acterium / virus and stimulation by environmental factors . 
oreov er, the e xplicit description of each dataset was also 

rovided, which included cell line , disease , perturbation fac- 
or, etc. Third , different OMIC-based data types were pro- 
essed independently. For microarray data, the CEL files 
ere processed with the RMA function of oligo package 

 67 ) to normalize expression matrix; for RNA-seq data, raw 

ount data were normalized using DESeq2 package ( 68 ). Fi- 
ally , the cell line-specific expression profile was shown in 

TD using violin plots for any studied target (shown in Fig- 
re 4 B). All in all, a total of 625 exogenous stimuli (hypoxia, 

nterferon treatment, influenza infection, etc. ) that modified 

he expression profiles of 357 successful, 926 clinical trial, 
97 preclinical / patented & 1382 literatur e-r eported targets 
mong 313 cell lines were made available in TTD 2024. 

odified expressions of target altered by human endogenous 
 actor s . Gi v en that a gene can play distinct roles in dif-
erent contexts, particularl y w here the cell-specific function 

s involved, human endogenous gene perturbation (muta- 
ion, expression variation, etc. ) is considered as a power- 
ul way to explore target functions under different cell con- 
exts ( 74–77 ). In other words, cell line-specific gene pertur- 
ations are valuable for understanding the molecular mech- 
nism underlying target differ ential expr ession among cell 
ines, which can help to identify new cell-specific functions, 
r otein-pr otein interactions and regulatory cascades ( 78– 

1 ). 
Such target’s expressions regulated by endogenous fac- 

ors were collected based on the following procedure. First , 
he GEO ( 65 ) & Expression Atlas ( 66 ) were manually re-
ie wed to retrie v e gene e xpr ession data alter ed by di v erse
uman endo genous factors, w hich included protein m uta- 
ions , expression variations , etc. Second , detailed informa- 
ion of each dataset (such as cell line , disease , and human 

ndogenous factor) was meticulously extracted, which re- 
ulted in over 400 types of human endogenous factors (such 

s KRAS mutation, and MYC ov er-e xpression), and the 
actor-induced expression variation was also illustrated in 

igure 4 C. The process and normalization of OMIC-based 

aw data were conducted by following the same procedure 
s that was discussed in the above two sections. All in all, 
he expression profile of 352 successful, 934 clinical trial, 
92 preclinical / patented, and 1363 literatur e-r eported tar- 
ets among 198 cell lines were provided. 

egular update on the drug & target data and diverse func- 
ions 

he integration of newly emerged drugs and targets to TTD 

as also routinely conducted in this upda te. Fir st , the drugs 
pproved during the past two years were collected from 

wo authoritati v e pub lications ( 82 , 83 ). Second , ne w drugs
n clinical trials were collected from various established re- 
ources, such as ClinicalTrials.gov, PhRMA medicines in 

e v elopment reports, and numerous Drug Pipeline Reports 
f > 200 companies (such as Pfizer , Roche , Sanofi and Glax- 
SmithKline ). Third , the trial status of drugs available in 
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Figure 4. Targets’ druggability showed by cell-based expression variation. ( A ) Varied expressions of tar g et acr oss differ ent cells of diver se diseases . Targets’ 
expression data for different cell types in normal and untreated conditions were collected and illustrated by pictorial bar chart, and 1742 cell types from 

7289 experimental samples wer e r eported, which cover ed several (a total of 121) disease classes (such as skin cancers , tuberculosis , allergic rhinitis , and 
ulcerati v e colitis) defined by ICD-11. ( B ) Differential expressions of a target induced by exogenous stimuli . Cell type-based differ ential expr essions of targets 
induced by exogenous causes (a total of 625 exogenous causes, such as interferon treatment, influenza infection and hypoxia) among 313 cell types were 
shown. ( C ) modified expressions of a target altered by human endogenous factor . Cell type-based target’s expression modifications mediated by exogenous 
causes (a total of 447 endogenous factors, such as KRAS mutation and MYC ov er-e xpression) among 198 cell types were explicitly described. 
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TTD were continuously updated using the timely data pro-
vided in ClinicalTrials.gov, company’s official reports, etc.
Fourth , the preclinical and patented drugs were collected
from di v erse data sour ces, such as company’s pipeline r e-
ports, large number of patents authorized by the patent of-
fices of many countries, and recent literature reports. 

For each of the collected drugs, its corresponding thera-
peutic target(s) was fur ther valida ted by following a routine
process that showed the functional roles of the target(s) in
disease phenotype and the ability of drug-like molecule to
modulate the activities of the target to achie v e therapeutic
efficacies ( 84 ). Finally , the status of each therapeutic tar-
get was determined based on the highest status of its corre-
sponding drugs, which were then classified to successful tar-
get (approved drug), clinical trial target (clinical trial drug),
preclinical target (drug in preclinical trial), patented target
(drug protected by the authorized patent), and literature-
reported target (inv estigati v e agent). As a result (provided
in Table 1 ), a total of 3730 targets and 39 862 drugs were fi-
nally provided in TTD 2024 and the total numbers of drugs
and their corresponding therapeutic targets in different ver-
sions of TTD over the past decade was also described. 
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Table 2. Three major contents and their corresponding statistics integrated to this version of TTD, which included: target druggability illustrated by 
molecular interactions or regulations, characterized by different human system features and reflected by di v erse cell-based expression variations 

Target druggability illustrated by molecular interactions or regulations 
✩ Ligand-specific spatial structures of target in its drug binding poc k et 
No. of targets with drug binding sites information No. of ligands No. of structures 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
319 427 116 375 16373 22431 
✩ Netw ork pr oper ties of tar g et measur ed by pr otein–pr otein inter actions 
No. of targets with pr otein–pr otein interaction information No. of Interacting Protein No. of pr otein–pr otein 

interactions 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
426 727 143 867 9309 52713 
✩ Bidir ectional r egulations betw een micr obiota and ther apeutic ag ents 
No. of microbe(s) affecting the metabolism of drugs No. of drugs No. of microbe and drug 

interactions 
Order Family Genus Species 
59 101 135 194 663 9812 
Target druggability characterized by different human system features 
✩ Similarity profile of target to human proteins outside its amily 
No. of targets with human similarity proteins outside the target families No. of similarity proteins No. of protein families 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
389 933 204 1479 3128 1004 
✩ Involvements of tar g et in the w ell-estab lished life-essential pathways 
No. of targets with af filia ted life-essential pathways information No. of life-essential pathways No. of targets with only one 

pathway 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
373 897 196 1415 241 679 
✩ Distributions of tar g et among a variety of tissues or organs in human 
No. of targets with human tissues or organs distribution information No. of tissues / organs No. of experimental samples 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
338 600 143 920 32 201 
Target druggability reflected by diverse cell-based expression variations 
✩ Varied expressions of target across different cells of diverse diseases 
No. of targets with varied expressions across different cell types No. of cell types No. of disease classes 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
347 939 188 1371 1742 121 
✩ Differ ential expr essions of tar g et induced by many exog enous causes 
No. of targets with differential expressions induced by exogenous causes No. of cell types No. of exogenous causes 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
357 926 197 1382 313 625 
✩ Modified expressions of target altered by human endogenous factors 
No. of targets with modified expressions altered by endogenous factors No. of cell types No. of endogenous factors 
Successful Clinical trial Preclinical / patent Literatur e-r eported 
352 934 192 1363 198 447 
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Moreover, a ‘ batc h searc h ’ function allowing the upload 

f a list of TTD drug IDs or Target IDs was implemented to 

he TTD 2024 ( https://db .idrblab .net/ttd/ttd-search/batch- 
earch ), and a ‘ full download ’ function of all search re-
ults was also realized by simply clicking the ‘ Download the 
earch Results ’ button. Such functions could be very help- 

ul to broad audiences, especially those pharmacolo gicall y 

nclined users. It should be noted that, although it was tech- 
ically feasible to implement the search function based on 

ultiple types of entries other that drug / target IDs (such 

s drug / target name / synonyms), that function could have 
ubstantial chance to return many false positi v e sear ch r e-
ults, which had ther efor e not been made available in TTD 

024 yet. 

ONCLUSION AND PERSPECTIVES 

dentification and validation of therapeutic targets is one of 
he critical steps in drug de v elopment ( 85 ). Insufficient anal- 
sis of target druggability in the early stage of drug discov- 
ry remains one of the key issues of high drug attrition rates, 
hich should ther efor e be systematically considered and 
arefully assessed ( 86 ). Taking a recent study as an example 
 9 ), it identified se v eral essential features of target drugga- 
ility (such as ‘ distribution of tar g et among various tissues 
r organs in human ’, ‘ similarity profile of target to human 

roteins outside its family ’, ‘ involvements of target in well- 
stablished life-essential pathways ’ and two ‘ network proper- 
ies of tar g et measur ed by PPIs ’) from 89 successful targets.
hese features were reported to denote the difference be- 

ween the targets of rapid and slow clinical progression pro- 
esses. In the TTD 2024, all those ‘essential features’ of tar- 
et druggability were collected and significantly extended to 

26 successful, 1014 clinical trial, 212 preclinical / patented, 
nd 1479 literatur e-r eported therapeutic targets. All in all, 
he valuable data on target druggability provided in TTD 

024 (as described in Table 2 ) together with the future up- 
ates of established databases were essential in facilitating 

he explorations of the druggability characteristics of tar- 
ets for guiding target and drug discovery. 
TTD has been committing to provide comprehensi v e 

ata on therapeutic targets to facilitate new drug and tar- 
et discovery. Since the beginning of the 21st century, it 
as undergone many updates ( 16 , 87–89 ) and accumulated 

https://db.idrblab.net/ttd/ttd-search/batch-search
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worldwide impacts during the past twenty years. Particu-
larly, ther e wer e many online tools that adopted TTD data
for server development. Some of them used TTD data to
estab lish serv ers facilitating drug repurposing, such as Lig-
Advisor ( 90 ) & DrugRep ( 91 ); discovery of drug / target, such
as CoVex ( 92 ) & DeepCancerMap ( 93 ); prediction of ad-
verse drug reaction / synergistic combination, such as MED-
ICASCY ( 94 ) & H-RACS ( 95 ); compound-based func-
tional enrichments, such as MBROLE3 ( 96 ) & MMEASE
( 97 ). Moreover, TTD information has also been adopted
by recent studies to promote various scientific discoveries.
Some identified the association between genetic variant and
disease ( 98–103 ); some others re v ealed the molecular char-
acteristics crucial in virus infection ( 104 ), target variability
key in determining drug response ( 62 ), and target promising
in discovering antifungal therapy ( 105 ). With the rapid pro-
gression of modern technology and concerted effort in cur-
rent drug discovery, the wealth of data amassed in TTD and
other databases ( 11–20 ) over the past decades collectively
established solid foundations for the identification of novel
targets and the discovery of new therapeutics ( 98–100 ). 
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