
Computers in Biology and Medicine 166 (2023) 107577

Available online 11 October 2023
0010-4825/© 2023 Elsevier Ltd. All rights reserved.

An interpretable ensemble learning model facilitates early risk stratification 
of ischemic stroke in intensive care unit: Development and external 
validation of ICU-ISPM 

Wei Hu a,1, Tingting Jin a,1, Ziqi Pan b,1, Huimin Xu a, Lingyan Yu a, Tingting Chen a, Wei Zhang b, 
Huifang Jiang a, Wenjun Yang a, Junjun Xu a, Feng Zhu a,b,**, Haibin Dai a,c,* 

a Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China 
b College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China 
c Clinical Pharmacy Research Center, Zhejiang University School of Medicine, Hangzhou, 310009, China   

A R T I C L E  I N F O   

Keywords: 
Critical care 
Ischemic stroke 
Ensemble learning 
APACHE 
Mortality 

A B S T R A C T   

Ischemic stroke (IS) is a common and severe condition that requires intensive care unit (ICU) admission, with 
high mortality and variable prognosis. Accurate and reliable predictive tools that enable early risk stratification 
can facilitate interventions to improve patient outcomes; however, such tools are currently lacking. In this study, 
we developed and validated novel ensemble learning models based on soft voting and stacking methods to 
predict in-hospital mortality from IS in the ICU using two public databases: MIMIC-IV and eICU-CRD. Addi-
tionally, we identified the key predictors of mortality and developed a user-friendly online prediction tool for 
clinical use. The soft voting ensemble model, named ICU-ISPM, achieved an AUROC of 0.861 (95% CI: 
0.829–0.892) and 0.844 (95% CI: 0.819–0.869) in the internal and external test cohorts, respectively. It 
significantly outperformed the APACHE scoring system and was more robust than individual models. ICU-ISPM 
obtained the highest performance compared to other models in similar studies. Using the SHAP method, the 
model was interpretable, revealing that GCS score, age, and intubation were the most important predictors of 
mortality. This model also provided a risk stratification system that can effectively distinguish between low-, 
medium-, and high-risk patients. Therefore, the ICU-ISPM is an accurate, reliable, interpretable, and clinically 
applicable tool, which is expected to assist clinicians in stratifying IS patients by the risk of mortality and 
rationally allocating medical resources. Based on ICU-ISPM, an online risk prediction tool was further developed, 
which was freely available at: http://ispm.idrblab.cn/.   

1. Introduction 

Globally, stroke is the second leading cause of death, accounting for 
nearly 6 million deaths annually, or 11.6% of all deaths [1]. Among 
patients admitted to ICUs, this rate is even higher [2]. As a limited 
medical resource, ICUs are indispensable for sustaining patients’ lives 
[3,4]. However, ICUs are also a labor and financial burden, and the 
efficient utilization of ICU resources is crucial [5,6]. Ischemic stroke (IS) 
is a common condition entering the ICU, accounting for more than 87% 
of all strokes, with widely varying prognoses [7]. Therefore, clinical 
tools that provide accurate and reliable prognostic predictions for IS 

patients are important not only for early clinical decision-making, but 
also to facilitate the optimal allocation of available medical resources. 

Currently, the National Institutes of Health Stroke Scale (NIHSS) is a 
widely used clinical tool to assess neurological deficits in stroke patients 
[8]. The NIHSS score can indirectly predict stroke mortality, but some 
items lack consistency or reliability due to subjective judgment and 
incompetence of assessors. Thus, several studies have developed pre-
diction models attempting to identify early adverse progression of acute 
stroke [9–12]. In these studies, however, some limitations exist: 1) the 
simplicity of the model could lead to suboptimal performance and 
robustness; 2) a lack of reasonable risk stratification thresholds, which 
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affect clinical decision making; 3) no online prediction tool had been 
developed, making the model inapplicable in clinical practice. 

Ensemble modeling is widely recognized as a pivotal area of research 
in machine learning (ML), owing to its ability to enhance prediction 
accuracy and robustness. Stacking [13] and voting [14] are two popular 
ensemble learning algorithms that can combine numerous homogeneous 
or heterogeneous regular base models. In this study, we developed 
ensemble learning models to predict in-hospital mortality from IS in the 
ICU and identified the associated predictors. We also contrasted the 
performance between our models and the widely used Acute Physiology 
and Chronic Health Assessment (APACHE) scoring system [15,16]. To 
improve the clinical acceptance and translational value of the model, 
interpretable machine learning methods were used to gain insight into 
the predictions or outcomes, and a user-friendly online prediction tool 
was developed. 

2. Methods 

2.1. Data source and outcome 

The training and internal test cohort data were extracted from the 
Medical Information Mart for Intensive Care IV (MIMIC-IV) [17]. In 
addition, an independent external test cohort was derived from the eICU 
Collaborative Research database (eICU-CRD) [18]. Our study used the 
MIMIC-IV database version 2.1 (https://physionet.org/content/mimici 
v/2.1/) and eICU-CRD database version 2.0 (https://physionet.org/co 
ntent/eicu-crd/2.0/) publicly available through the PhysioNet website 

(certification ID: 11410188). The outcome of this study was in-hospital 
mortality. The MIMIC-IV and eICU-CRD databases have received ethical 
approval from the Institutional Review Boards (IRBs) at Beth Israel 
Deaconess Medical Center (BIDMC) and Massachusetts Institute of 
Technology (MIT). Since the database contains no protected health in-
formation, IRB approval included a waiver for informed consent. 
Reporting of this study followed the Transparent Reporting of Multi-
variate Predictive Models for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines (Appendix Table S1) [19]. 

2.2. Study population 

The inclusion criteria for this study were patients aged ≥18 years 
admitted to the ICU with IS as the major cause. The diagnostic criteria 
for IS are shown in Appendix Table S2. Patients with ICU stay less than 
24 h and without an APACHE III/IVa score were excluded. Furthermore, 
we removed patients whose weights were outside 50–300 kg or their 
heights were outside 50–250 cm. As the outcome was in-hospital mor-
tality, patients with missing a discharge status were excluded. The 
APACHE scoring system, which has been the gold standard for intensive 
care, is categorized into two modified versions known as APACHE-III 
and IVa [15]. MIMIC-IV and eICU-CRD databases use APACHE-III and 
APACHE-IVa, respectively. Here, for convenience in the following 
description, they are referred to collectively as APACHE. 

Table 1 
Baseline characteristics of the MIMIC IV and eICU-CRD cohorts.  

Characteristic, (Units) MIMIC IV cohort (n = 3149) eICU-CRD cohort (n = 2464) 

Survival Death P-value Survival Death P-value 

n = 2583 n = 566  n = 2227 n = 237  

Age (years) 68.4 (16.3) 73.5 (14.2) <0.001 68.1 (14.9) 74.1 (13.0) <0.001 
Intubation   <0.001   <0.001 

No (n, %) 1915 (74.1) 239 (42.2)  1970 (88.5) 118 (49.8)  
Yes (n, %) 668 (25.9) 327 (57.8)  257 (11.5) 119 (50.2)  

Heart rate (beats/min) 80.6 (14.7) 86.4 (16.5) <0.001 76.7 (14.1) 85.5 (17.6) <0.001 
Mean arterial pressure (mmHg) 81.9 (8.7) 77.9 (9.9) <0.001 84.4 (8.5) 82.3 (9.7) 0.002 
Respiratory rate (breaths/min) 19.2 (3.3) 20.7 (4.2) <0.001 18.8 (3.7) 20.3 (5.1) <0.001 
Temperature (◦C) 36.9 (0.4) 37.0 (0.8) 0.114 36.8 (0.4) 37.0 (0.5) <0.001 
Urine output (mL) 1761.4 (1248.7) 1535.0 (1295.0) <0.001 1651.3 (1066.3) 1372.8 (1062.0) 0.001 
Hemoglobin (g/dL) 34.0 (6.9) 31.8 (6.9) <0.001 12.6 (2.1) 12.3 (2.2) 0.056 
WBC (109/L) 12.2 (6.9) 15.7 (9.6) <0.001 10.3 (5.2) 13.7 (6.6) <0.001 
Platelets (109/L) 216.7 (104.8) 197.0 (100.6) <0.001 212.7 (69.5) 210.2 (94.5) 0.697 
Albumin (g/dL) 3.6 (0.6) 3.2 (0.7) <0.001 3.5 (0.5) 3.3 (0.7) 0.001 
Anion gap (mEq/L) 15.8 (3.8) 17.8 (5.2) <0.001 11.4 (4.0) 12.9 (5.1) <0.001 
Bicarbonate (mEq/L) 22.5 (3.8) 20.5 (4.9) <0.001 24.0 (3.4) 22.3 (4.0) <0.001 
BUN (mg/dL) 22.9 (15.8) 32.3 (23.0) <0.001 20.7 (12.3) 26.8 (16.3) <0.001 
Creatinine (mg/dL) 1.3 (2.2) 1.7 (1.7) <0.001 1.2 (1.0) 1.4 (1.0) 0.013 
Glucose (mEq/L) 155.2 (84.7) 190.8 (97.5) <0.001 147.7 (76.0) 185.9 (87.4) <0.001 
ALP (IU/L) 90.6 (70.4) 112.6 (88.2) <0.001 86.5 (42.7) 96.6 (41.2) 0.004 
Bilirubin (mg/dL) 0.8 (1.9) 1.4 (3.6) 0.003 0.7 (0.4) 0.9 (0.7) <0.001 
CKD   <0.001   0.025 

No (n, %) 2133 (82.6) 431 (76.1)  2134 (95.8) 219 (92.4)  
Yes (n, %) 450 (17.4) 135 (23.9)  93 (4.2) 18 (7.6)  

Antiarrhythmic   0.001   0.048 
No (n, %) 1597 (62.0) 304 (54.2)  1753 (96.2) 184 (92.9)  
Yes (n, %) 978 (38.0) 257 (45.8)  70 (3.8) 14 (7.1)  

Antiplatelet   <0.001   0.116 
No (n, %) 1553 (60.3) 389 (69.3)  1487 (81.6) 171 (86.4)  
Yes (n, %) 1022 (39.7) 172 (30.7)  336 (18.4) 27 (13.6)  

Sedative   <0.001   <0.001 
No (n, %) 1028 (39.9) 118 (21.0)  1690 (92.7) 164 (82.8)  
Yes (n, %) 1547 (60.1) 443 (79.0)  133 (7.3) 34 (17.2)  

Antibacterial   <0.001   <0.001 
No (n, %) 1686 (65.5) 283 (50.4)  1733 (95.1) 174 (87.9)  
Yes (n, %) 889 (34.5) 278 (49.6)  90 (4.9) 24 (12.1)  

GCS Score 11.6 (3.4) 8.6 (4.5) <0.001 12.9 (2.9) 9.0 (4.2) <0.001 

GCS, Glasgow coma scale. WBC, white blood cell count. ALP, alkaline phosphatase. BUN, blood urea nitrogen. CKD, chronic kidney disease. 
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2.3. Feature extraction and selection 

In the study, we collected clinical information in the first 24 h in the 
ICU, specifically, information on demographics, vital signs, laboratory 
test data, comorbidities, treatment medications, and clinical scores. 
Following Deshmukh et al. [20], we calculated the average or maximum 
and minimum values of vital signs and laboratory data within 24 h 
(Table 1 and Appendix Table S3). Information on treatment medications 
included antibacterial, vasopressors, antiarrhythmics, antiplatelets, 
anticoagulation, diuretics, and sedatives within 24 h. Comorbidities 
were included as binary variables including atrial fibrillation, diabetes 
mellitus, coronary artery disease, hypertension, congestive heart failure, 
dementia, chronic obstructive pulmonary disease, chronic kidney dis-
ease, liver failure, and metastatic cancer. 

72 predictor variables were extracted and entered as candidate 
variables in the feature screening process (Fig. 1). Firstly, features with a 
missing rate >30% were excluded. Secondly, the features were exam-
ined for statistical significance with mortality, and non-significant fea-
tures were also eliminated. Thirdly, features with high correlations were 
excluded to avoid data redundancy. Finally, a recursive feature 

elimination cross-validation (RFECV) algorithm based on an extreme 
gradient boosting model was used to select key variables and filter the 
optimal subset of patient features. A 10-fold cross-validation was used in 
this step, with AUROC as the scoring parameter. Appendix Table S3 
described the reasons for features dropout. 

2.4. Data preprocessing and model development 

Fig. 1 depicts the outline of our study’s primary workflow. The 
MIMIC-IV dataset, 80% of patients were randomly assigned to the 
training set and 20% to the internal test set. Meanwhile, all patients in 
the eICU-CRD dataset were used as an external test set. 

To avoid data leakage, the imputation of missing values and the 
normalization of the data were performed separately on the training and 
testing sets after the division of the data. We filled the continuous and 
categorical variables with missing values < 5% by using the mean and 
the plurality, respectively. For variables with missing values > 5%, we 
used the miceforest package to implement multiple imputation [21]. To 
improve the stability of the models, all continuous variables were 
normalized to achieve a distribution with a mean of 0 and a standard 

Fig. 1. Flowchart for the development of the early mortality prediction model for IS patients in the ICU. SMOTE, synthetic minority over-sampling technique. 
ADASYN, adaptive synthetic sampling. 
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deviation of 1 [22]. 
Data from MIMIC-IV and eICU-CRD are distributed imbalanced: the 

ratios of the death and survival groups were approximately 1:5 and 1:10, 
respectively. Therefore, data imbalances were handled using 5 methods: 
class-weighting method, synthetic minority oversampling technique 
(SMOTE) [23], random oversampling examples (ROSE) [24], adaptive 
synthetic sampling (ADASYN) [25], and SMOTETomek [26]. Finally, 
after comparing the model performance of the above methods, the 
class-weighting method was chosen for model development (Appendix 
Table S4). 

In the present study, a two-layer ensemble model was applied. The 
first layer consists of six ML models: logistic regression (LR), support 
vector machine (SVM), random forest (RF), extreme gradient boosting 
model (XGBoost), light gradient boosting machine (LightGBM), and 
multilayer perceptron (MLP). We also fitted several other ML methods, 
including decision tree (DT), k-nearest neighbor (KNN) and naive bayes 
(NB). However, since their AUROC values were <0.8 in the initial ex-
periments, they were all excluded (Appendix Table S5). In the second 
layer, a soft voting or stacking method was used to balance the predic-
tion results from the first layer [27]. 

Soft voting is an ensemble learning method that applies a weighted 
average to the prediction results of multiple models and selects the class 
with the highest weighted average as the final prediction result [28]. 
The stacking ensemble method takes predictions from multiple models 
as input and then uses a meta model to train those predictions to 
generate the final result [29]. 

Hyperparameters were optimized during training using a grid search 
strategy and 10-fold cross-validation. The model with the highest 
average performance on all cross-validation sets was chosen. For the 
grid search process, AUROC was used as the scoring metric. Based on the 
completed risk prediction models, the optimal model was selected to 
develop and publish an online prediction tool. 

2.5. Statistical analysis 

Continuous variables were expressed as mean (standard deviation), 
and categorical variables were expressed as count and percentage. To 
test the statistical significance of the variables with patient mortality, 
two-tailed t tests and χ2 tests were used. A two-tailed P-value <0.05 was 
considered statistically significant. For the ML model, Scikit-Learn 
v1.2.1, XGBoost v1.7.4, LightGBM v3.3.5 and MLXtend v0.21.0 were 
used to develop the models and tune the hyperparameters in Python 
v3.9. In addition, Pandas v1.5.2, and Scipy v1.9.1 were used for statis-
tical analysis. Model performance was evaluated using AUROC and 
AUPRC. Bootstrap 2000 samples were used to estimate 95% confidence 
intervals (CIs) for the AUC. 

3. Results 

3.1. Characteristics of the study participants 

According to the inclusion and exclusion criteria of participants, 
3149 and 2464 IS patients were included in the MIMIC-IV and eICU-CRD 
cohorts, respectively (Appendix Fig. S1). After a rigorous feature selec-
tion process (Appendix Fig. S2), 24 important features including age, 
temperature, heart rate (HR), mean aortic pressure (MAP), respiratory 
rate (RR), GCS score, intubation, urine output in the first 24 h, hemo-
globin, white blood cell count (WBC), platelet count (PLT), albumin, 
anion gap, bicarbonate, blood urine nitrogen (BUN), creatinine, blood 
glucose, alkaline phosphatase (ALP), total bilirubin, chronic kidney 
disease (CKD), antiarrhythmic, antiplatelet, sedative and antibacterial 
were determined for the development of a compact model. The in- 
hospital mortality rates were 17.97% (n = 566) and 9.62% (n = 237) 
for the MIMIC-IV and eICU-CRD cohorts, respectively. In both cohorts, 
the mean age of the death group was 73.5 and 74.1, which was signif-
icantly higher than the 68.4 and 68.1 for the survival group (p < 0.001). 

The demographic and clinical features differences are outlined in 
Table 1. 

3.2. Performance of the machine learning models 

A grid search strategy and 10-fold cross-validation were used to 
select optimal hyperparameters for all machine learning models devel-
oped on the training set (2519 patients). The final optimal parameters 
for each model are shown in Appendix Tables S6–S7. 

The AUROC values of the 6 individual models were superior to the 
APACHE scoring system in both internal (630 patients) and external 
tests (2464 patients), as shown in Table 2. The two ensemble models 
based on stacking and soft voting are more robust and consistent than 
the individual models, significantly outperforming APACHE in both test 
sets (p < 0.05). Similarly, all the models had higher AUPRC than 
APACHE, with the stacking and soft voting models being 1st and 2nd, 
respectively, on the internal test set, and 3rd and 1st on the external test 
set. Fig. 2 displays the AUROC and AUPRC of these models in two in-
dependent test sets. 

3.3. Risk stratification and development of application 

Both the stacking and soft voting classifiers demonstrated excellent 
performance in the task of predicting mortality in IS patients, and the 
soft voting classifier with better robustness was chosen as the final 
prediction model. Risk stratification was developed in our model to 
make it more clinically applicable. Based on three-fold cross-validation 
of the training cohort, risk cutoff values of 0.172 and 0.581 were 
selected at 95% sensitivity and 95% specificity, respectively (Appendix 
Fig. S3). Patients were divided into three risk categories: low-, medium-, 
and high-risk. In the two test cohorts, these risk cutoff values were 
evaluated independently. The confusion matrixes demonstrated that the 
risk stratification system can effectively distinguish between patients 
who are low-, medium-, and high-risk (Fig. 3A). The likelihood of in- 
hospital mortality differed by risk group (Fig. 3B). In the internal test 
cohort, the in-hospital mortality rates for low-, medium-, and high-risk 
patients were 1.44% (0.011–0.018), 25.0% (0.229–0.272), and 56.4% 
(0.536–0.593), respectively. Similarly, in the external test cohort, these 
values were 1.86% (0.015–0.022), 11.69% (0.110–0.124), and 36.38% 
(0.348–0.380), respectively. 

The soft voting ensemble learning algorithm was used to build the 
risk prediction model, which we named the ICU Ischemic Stroke Predic-
tion Model (ICU-ISPM). Based on ICU-ISPM, an online risk prediction tool 
was further developed (http://ispm.idrblab.cn/; Appendix Fig. S4). By 
entering all necessary values, users can obtain information about in- 
hospital mortality and risk stratification for IS patients in the ICU. 

3.4. Feature importance and model interpretations 

The ICU-ISPM was interpretable using the Shapley additive explain 
(SHAP) method, which allows the contribution and impact of each 
feature on the final prediction to be calculated precisely [30]. In Fig. 3C, 
we plot the importance of features for the ICU-ISPM as well as the 
relative weights of features in decision-making. According to the weight 
of the features, the top three most important features are GCS score, age, 
and intubation. The ICU-ISPM’s SHAP summary graph further illustrates 
the relationship between the high and low values of each feature and 
SHAP values. As shown in Fig. 3D, a low GCS score, older age, and 
intubation increase death risk. The SHAP force graph in Fig. S5 analyzes 
the predicted outcomes for specific patients at the local level. For 
example, we randomly selected two cases from high- and low-risk 
groups that accurately predicted death and survival (See Appendix 
Fig. S5 for details). 
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4. Discussion 

Early in the course of IS, especially in patients admitted to the ICU, 
the mortality rate is highest [31]. An accurate, reliable, interpretable, 
and clinically applicable risk assessment model is essential for the 
management of IS patients. In this study, we developed a novel pre-
dictive model, ICU-ISPM, for predicting early mortality in IS patients. 
The innovation of the model was the utilization of an ensemble learning 
method. Additionally, the study’s unique characteristics included a 
rigorous feature selection process, multiple imbalanced data processing 
methods, a sound risk stratification strategy and a user-friendly online 
prediction tool. 

ICU-ISPM was comprehensively tested in independent internal and 
external test cohorts, and the results showed it’s accurate, generalizable, 

and significantly superior to APACHE scoring system. In test sets, the 
AUROC value of ICU-ISPM improved by at least 4.5% compared to 
APACHE. The robustness performance of ICU-ISPM outperformed 
various classical ML models (LR, XGBoost, LightGBM, RF, SVM and 
MLP). Such results provide additional evidence that ensemble learning 
algorithms can enhance the performance and robustness of classification 
tasks involving structured clinical forms. 

Currently, predicting mortality in stroke patients is an active area of 
research, and several studies have been published on predicting the risk 
of early mortality in IS patients. Soft voting and stacking methods pro-
duced satisfactory and reliable AUROC, AUPRC scores when compared 
to individual models. Table 3 compares the performance of our model to 
those of other similar studies [9–12]. Based on the comparison of 
AUROC metrics, our model had the best performance since not all 

Table 2 
Performance of machine learning models and APACHE scoring system for early mortality prediction.  

Model name Internal test set External test set 

AUROC Confidence Interval (95%) P value AUROC Confidence Interval (95%) P value 

APACHE 0.784 0.736 0.831 – 0.799 0.770 0.830 – 
XGBoost 0.861 0.829 0.892 0.01 0.832 0.807 0.858 0.10 
LightGBM 0.856 0.823 0.887 0.01 0.832 0.808 0.859 0.10 
RF 0.840 0.807 0.873 0.06 0.840 0.815 0.866 0.04 
SVM 0.849 0.814 0.881 0.03 0.836 0.910 0.860 0.06 
LR 0.808 0.769 0.849 0.41 0.845 0.820 0.870 0.02 
MLP 0.847 0.813 0.879 0.03 0.818 0.792 0.846 0.36 
Stacking 0.864 0.832 0.894 0.01 0.840 0.815 0.866 0.04 
Voting 0.861 0.829 0.892 0.01 0.844 0.819 0.869 0.02 

APACHE, acute physiology and chronic health assessment. LR, logistic regression. SVM, support vector machine. RF, random forest. XGBoost, extreme gradient 
boosting. LightGBM, light gradient boosting machine. MLP, Multilayer Perceptron. 

Fig. 2. Model performances are compared in internal test and external test sets. (A) AUROC results of internal test set. (B) AUPRC results of internal test set. (C) 
AUROC results of external test set. (D) AUPRC results of external test set. APACHE, acute physiology and chronic health assessment. XGB, extreme gradient boosting. 
LGB, light gradient boosting machine. RF, random forest. SVM, support vector machine. Logit, logistic regression. MLP, Multilayer Perceptron. 
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studies provided AUPRC values. 
Additionally, choosing the appropriate decision threshold based on 

the prediction model is a challenge. However, previous studies have 
lacked corresponding work. In our study, the population was classified 
as low-, medium-, or high-risk with 95% sensitivity and 95% specificity 
using risk cut-off values of 0.172 and 0.581. In other words, by using the 
cut-off values for low and high risk, we can accurately identify truly low- 
and high-risk populations. To make our study findings clinically useful, 
we developed an open-access online prediction tool based on ICU-ISPM. 
Users can easily and quickly estimate the probability of early mortality 
in IS patients by entering the relevant variables, as well as learn more 
about the risk stratification. Clinical decision-makers can use the output 
of the model to stratify patients early, identify low- or high-risk groups, 
make more optimal decisions, and allocate limited medical resources 
more efficiently [32,33]. In this way, ICU resources can be efficiently 
used and medical quality and efficiency can be improved. 

Interpretive analysis of ICU-ISPM showed that a low GCS score, older 
age and intubation were strong predictors of early mortality in IS pa-
tients. The GCS score has been demonstrated to be a strong predictor of 
hospital mortality and poor neurological prognosis [34], with infarcted 
patients with a GCS > 8 having a significantly better prognosis than 
those with a GCS < 8 [35]. Similarly, our results indicate that the GCS 
score is the most important feature of ICU-ISPM. Typically, older pa-
tients have a higher risk of both morbidity and mortality from strokes. 
In-hospital mortality following a stroke increases after the age of 60 and 
reaches a peak of more than 18% after the age of 90 [36]. Mechanical 
ventilation or other types of respiratory support are typically needed for 
patients with acute brain injuries who are admitted to the ICU. Studies 
have shown that patients with severe IS requiring airway intubation are 
at high risk of death and have a poor functional prognosis [37,38]. 
White blood cell count, platelet count and hemoglobin level were 
important features that affected the ability of our model, and previous 

Fig. 3. Risk stratification and feature contribution analysis for ICU-ISPM. (A) Confusion matrices at cutoffs of 0.172 and 0.581 for the low- and high-risk groups, 
based on the internal test and external test sets. (B) The actual probability of early mortality in low-, medium- and high-risk groups in the internal and external test 
sets, respectively. (C) The weighting and ranking of the importance of the 24 features. (D) The SHAP summary graph. GCS, glasgow coma scale. WBC, white blood 
cell count. Alkphos, alkaline phosphatase. RR, respiratory rate. BUN, blood urea nitrogen. Temp, temperature. Urineoutput, 24 h urine output. HR, heart rate. MAP, 
mean arterial pressure. CKD, chronic kidney disease. 

Table 3 
Performance comparison with other similar studies.  

Study Algorithm/Feature number Internal test External test 

AUROC (95% CI) AUPRC (95% CI) AUROC (95% CI) AUPRC (95% CI) 

Current study (ICU-ISPM) Soft voting/24 0.861 (0.829–0.892) 0.543 (0.453–0.644) 0.844 (0.819–0.869) 0.378 (0.317–0.445) 
Yang Ouyang (2023) [10] Random Forest/18 0.799 (NA) NA 0.733 (NA) NA 
Wei Liu (2022) [11] Random Forest/58 0.806 (NA) 0.402 (NA) 0.838 (NA) 0.417 (NA) 
Vida Abedi (2021) [12] Random Forest/37 0.820 (NA) NA NA NA 
Xiaodan Li (2022) [9] Cox regression/12 0.753 (NA) NA NA NA 

AUROC, area under the receiver operating characteristic curve. AUPRC, area under the precision-recall curve. CI, confidence interval. 
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studies have confirmed their significance [39–42]. 
This study identified additional serum biomarkers, especially ALP, 

which was not included in previous stroke mortality models despite the 
fact that a higher serum ALP level is associated with stroke mortality 
[43]. Furthermore, to the best of our knowledge, this is the first study to 
incorporate early medication as variables to predict IS mortality. Anti-
platelet and antibacterial therapy both decreased mortality risk, but 
sedation and antiarrhythmic therapy increased such a risk. It is well 
known that guidelines recommend antiplatelet agents as the basic 
treatment for AIS, confirming their importance in treating IS and 
improving prognosis [44]. Patients with severe stroke often require 
more aggressive thrombolysis or thrombolytic therapy, which often 
delays antiplatelet therapy until after 24 h, so those who receive anti-
platelet therapy early are generally less ill [44]. Stroke patients are more 
susceptible to infections, the most prevalent of which are pneumonia 
and urinary tract infections, as a result of impaired antimicrobial de-
fenses [39]. Antibacterial agents used in the treatment or prevention of 
post-stroke infections may enhance recovery from stroke [39]. 
Currently, there are no reports indicating an association between anti-
arrhythmic or sedative agents and the prognosis of IS patients, but a 
hypothesis might be that such patients would have a greater burden of 
comorbidities leading to a poor prognosis [45]. 

This study has some limitations. First, our data sources were two U.S. 
public databases. Although the involved populations included a mix of 
different ethnicities, over half were White or Caucasian, which may have 
prevented the extrapolation of these findings to other mixed-ethnic 
patient groups. Second, due to the large number of missing values, 
some clinical characteristics [46,47], including d-dimer, lipoprotein and 
BNP, that have been observed to potentially affect the prognosis of IS 
patients had to be eliminated. Third, neither database provided infor-
mation on NIHSS score and imaging, which are frequently used by cli-
nicians to assess the severity of patients with IS [8]. As a result, these 
variables were excluded from our prediction model. 

5. Conclusions 

The present study developed and validated a novel risk prediction 
model to estimate early mortality of patients with IS in the ICU, sur-
passing the performance of existing scoring systems. By employing the 
soft voting ensemble method, both accuracy and robustness of ICU-ISPM 
were enhanced. Moreover, our interpretable model enables clinicians to 
comprehend the underlying factors contributing to predicted outcomes. 
ICU-ISPM effectively identifies low-, medium-, and high-risk IS patients 
at an early stage, thereby facilitating clinical decision-making and 
optimal allocation of medical resources. 
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