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Abstract

Spatial proteomics aims for a global description of organelle-specific protein distribution and dynamics,
which is essential for understanding the molecular functions and cellular processes in health and disease.
However, the application of this technique is seriously restricted by the neglect of robustness among pro-
teomic signatures identified using standard statistical frameworks. Moreover, it is still a major bottleneck to
automatically interpretate the identified proteomic signatures due to lack of integration of subcellular infor-
mation. Herein, an online-tool SISPRO was constructed to (a) identify proteomic signatures with good
robustness and accuracy via collectively evaluating relative weighted consistency (CWrel) & area under
the curve (AUC) and (b) interpretate the identified signature based on comprehensive subcellular informa-
tion from 9 organelles and 22 subcellular structures. All in all, SISPRO provides the endeavor to realize
the simultaneous improvement of robustness and accuracy in signature identification and the unique
capacity in biological annotation lies in its wide coverage of proteins and comprehensive spatial informa-
tion. SISPRO is expected to be critical in spatial proteomic studies, which can be freely accessed without
any login requirement at https://idrblab.org/sispro/

� 2023 Elsevier Ltd. All rights reserved.
Introduction

Spatial proteomics aims for a global description of
organelle-specific protein distribution and
dynamics,1 which is essential for understanding
the molecular functions and cellular processes in
health and disease.2 The power of comparative
spatial proteomics to reveal the disease mecha-
nisms at the subcellular level has been successfully
harnessed by several studies.3–5 For example,
td. All rights reserved.
Krahmer et al. revealed subcellular reorganization
in diet-induced hepatic steatosis using spatial pro-
teomics and phospho-proteomics6; Hirst et al.
reported the role of endosome/lysosome dysfunc-
tion in neurodegenerative disorders such as hered-
itary spastic paraplegia based on subcellular
fractionation profiling and quantitative mass
spectrometry.7

However, the application of spatial proteomics is
still seriously restricted by the standard statistical
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frameworks, which highly focus on the prediction
accuracy of the identified proteomic signatures
while neglect the robustness among the
signatures from different sub-datasets.8 An increas-
ing number of studies have recognized that the
robustness of feature selection results is equally
important as good model performance.9–11 More-
over, it is still a major bottleneck to automatically
annotate the identified proteomic signature due to
the lack of integration of subcellular information.12

It has been widely reported that different pathways
and functions are carried out for a certain protein
in different subcellular locations.13,14 The knowl-
edge of the organelle-specific biological annotation
has the capacity to help interpret the molecular
functions of identified signatures in spatial pro-
teomic studies. Although several popular tools for
protein annotation such as Gene Ontology (GO),15

KEGG16 and REACTOME17 greatly contribute to
providing the cellular and organism-level functions
for proteins, they are not specific to organelles
and thus lead to the problem that the annotation
from these databases lacks specificity and accu-
racy for spatial proteomics. In addition, understand-
ing the protein–protein interaction (PPI) network for
a certain organelle can also help to discover the
molecular basis for human diseases caused by
the dysfunction of this organelle.18 Current PPI data
often contain interactions, where the two proteins
even don’t have the same subcellular localizations.
That is to say, the interactions between these pro-
teins may be biophysically possible, but biologically
unlikely. Such data can deteriorate the reliability in
interactome-based studies.19 Therefore, it is critical
to develop a tool that enables (1) a collective con-
sideration of robustness and accuracy in signature
identification20 and (2) an automated subcellular
interpretation for the identified proteomic signa-
tures.21 No such tool is available yet.
In this study, an online-tool SISPRO (Figure 1)

was constructed to (a) identify proteomic signature
with good robustness and accuracy via collectively
evaluating relative weighted consistency (CWrel)22

and area under the curve (AUC)23 and (b) interpre-
tate the identified signature based on a comprehen-
sive set of subcellular annotation information.
Particularly, this online-tool first identified the most
robust signature list via multiple sampling and then
the optimal signature list was determined with high-
est prediction accuracy and least number of signa-
tures. Second, the organelle-specific biological
interpretation for identified signatures were ana-
lyzed using the databases constructed in SISPRO
that covered a wide range of proteins and compre-
hensive spatial information (9 organelles and 22
subcellular structures). All in all, these features
above make SISPRO distinguished in not only sig-
nature identification but also subcellular annotation
for spatial proteomics, and therefore SISPRO is
expected to have great implications in current spa-
tial proteomic studies, which can be freely accessed
2

without any login requirement at https://idrblab.
org/sispro/.
Results and discussion

Workflow and implementation of SISPRO

The workflow of SISPRO included four steps: (I)
Data upload and preprocessing. It consisted of
missing value imputation, data filtering and
normalization. (II) Signature robustness
assessment. The CWrel was adopted to evaluate
the robustness among different signature lists
identified via multiple sampling. (III) Assessment
of prediction accuracy for identified signatures.
Based on the most robust signatures, the
signature list with highest AUC and minimal size
was discovered for further analysis. (IV)
Organelle-specific biological interpretation for
identified signatures. For optimal signatures,
annotation including organelle- and subcellular
structure-based protein function & signaling
pathway and protein–protein interaction can be
conducted by selecting preferred organelle(s) or
subcellular structure(s).
The SISPRO was constructed on a server

running Cent OS Linux v7.4 operating system
configured with Apache HTTP web server v2.4.6
and Apache Tomcat servlet container. SISPRO
provided a user-friendly interface, which was
developed by R package shiny v0.13.1. A plenty
of R packages were used in the background
processing. Without any login requirement,
SISPRO (https://idrblab.org/sispro/) was
accessible by various popular web browsers
including Google Chrome, Internet Explorer 10 (or
later), Mozilla Firefox and Safari.
Identifying proteomic signature of good
robustness and accuracy

To demonstrate the superiority of SISPRO in
robustness and accuracy for signature
identification, 6 benchmark datasets and 10
popular feature selection methods were adopted
in this study. The detailed information on these
datasets were provided in Supplementary
Table S1. For each dataset, the SISPRO and
traditional workflow based on 10 popular feature
selection methods were used, respectively. The
detailed workflow by SISPRO was conducted as
follows. First, random selection was conducted ten
times with 50% of the samples selected each
time, and the feature selection was performed for
the ten sub-samples individually resulting in ten
lists of the ranked features. Second, the CWrel for
the Top-N features from the ten lists were
calculated, respectively. Third, the signatures from
ten lists with highest CWrel are aggregated and
assessed using AUC. As for traditional workflow,
the first and second steps were the same as
SISPRO. Then, the mean of the AUCs of Top-N
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Figure 1. SISPRO was constructed for signature identification and subcellular annotation for spatial proteomics. It
was unique in identifying the proteomic signatures with both good robustness & accuracy via collectively evaluating
relative weighted consistency (CWrel) & area under the curve (AUC) and interpretating the identified signatures
based on a comprehensive set of subcellular annotation information (9 organelles and 22 subcellular structures).
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features from ten lists were calculated individually,
and the robustness of the ten feature lists
corresponding to the highest mean AUC was
assessed using CWrel. The results that compared
the accuracy and robustness of the signatures
identified by SISPRO and the traditional workflow
were described in Supplementary Table S2.
As illustrated in Table 1, the AUC and

corresponding CWrel using SISPRO and

3

traditional workflow for each dataset and feature
selection method were provided. In Table 1, the
numbers in bold referred to the better AUC or
CWrel when comparing SISPRO with traditional
workflow for a certain feature selection method.
Over 85% results from SISPRO were superior
than or consistent with that from traditional
workflow. For those lower results from SISPRO,
the variation between SISPRO and traditional



Table 1 The results of the accuracy and robustness of the signatures identified by SISPRO and the traditional workflow. Six benchmark datasets and 10 popular feature
selection methods were adopted in this study. For each dataset, the SISPRO and the traditional workflow for 10 popular feature selection methods were used, respectively.
The numbers in bold referred to the better AUC or CWrel when comparing the results from SISPRO and traditional workflow for a certain feature selection method.

Data ID Criterion AVE

(±SD)

Method Mean A Variety of Popular Feature Selection Methods Available for Applying

CHIS CBF ENTROPY FC LMEB PLS-DA RF RF-RFE T-Test SVM-RFE

JPST000934 AUC �0.004

(±0.009)

SISPRO 0.996 1.000 1.000 1.000 1.000 1.000 1.000 0.987 0.973 1.000 1.000

tradition 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CWrel +0.250

(±0.193)

SISPRO 0.800 0.796 0.886 0.994 0.945 0.781 0.712 0.747 0.640 0.638 0.862

tradition 0.550 0.760 0.844 0.787 0.871 0.373 0.459 0.451 0.022 0.200 0.729

PMID19833877 AUC +0.142

(±0.034)

SISPRO 0.923 0.938 0.828 0.938 0.938 0.953 0.922 0.984 0.906 0.891 0.938

tradition 0.781 0.791 0.766 0.822 0.794 0.788 0.788 0.802 0.767 0.720 0.777

CWrel +0.131

(±0.207)

SISPRO 0.548 0.929 0.330 0.938 0.966 0.204 0.195 0.190 0.564 0.527 0.632

tradition 0.417 0.367 0.278 0.911 0.906 0.195 0.189 0.179 0.093 0.422 0.626

PXD010361 AUC �0.013

(±0.026)

SISPRO 0.977 0.989 0.944 1.000 0.961 1.000 1.000 0.978 0.944 0.989 0.967

tradition 0.990 0.989 0.983 1.000 1.000 1.000 0.967 0.967 1.000 1.000 1.000

CWrel +0.127

(±0.137)

SISPRO 0.740 0.678 0.671 1.000 0.823 0.623 0.579 0.571 0.962 0.654 0.839

tradition 0.613 0.606 0.404 1.000 0.768 0.476 0.526 0.531 0.484 0.531 0.801

PXD001064 AUC �0.006

(±0.047)

SISPRO 0.718 0.660 0.678 0.643 0.663 0.783 0.832 0.657 0.812 0.782 0.667

tradition 0.724 0.705 0.708 0.635 0.651 0.759 0.782 0.705 0.767 0.762 0.762

CWrel +0.241

(±0.234)

SISPRO 0.507 0.944 0.642 0.763 0.586 0.460 0.518 0.187 0.210 0.454 0.307

tradition 0.266 0.128 0.385 0.331 0.546 0.290 0.270 0.112 0.168 0.310 0.119

PXD003972 AUC +0.001

(±0.001)

SISPRO 0.983 1.000 1.000 0.828 1.000 1.000 1.000 1.000 1.000 1.000 1.000

tradition 0.982 1.000 1.000 0.823 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CWrel +0.205

(±0.196)

SISPRO 0.867 0.820 0.865 0.943 0.966 0.902 0.889 0.893 0.797 0.859 0.733

tradition 0.662 0.729 0.422 0.923 0.822 0.747 0.684 0.720 0.142 0.742 0.689

PXD005144 AUC �0.055

(±0.085)

SISPRO 0.929 0.795 0.989 0.803 0.920 0.999 0.999 1.000 0.992 0.996 0.799

tradition 0.984 0.984 0.989 0.956 0.947 0.996 0.996 0.993 0.996 0.996 0.985

CWrel +0.131

(±0.136)

SISPRO 0.619 0.794 0.732 0.581 0.697 0.629 0.629 0.317 0.532 0.716 0.559

tradition 0.488 0.463 0.711 0.188 0.659 0.604 0.625 0.230 0.394 0.641 0.362
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workflow was very slight. Particularly, the variation
within 0.05 and 0.10 were 68.75% and 81.25%,
respectively. In addition, the means of AUC and
CWrel for all feature selection methods based on
SISPRO and traditional workflow were also
calculated. As shown in Table 1, for all benchmark
datasets, the mean robustness of the identified
features by SISPRO was superior than traditional
workflow with the variation from 0.127 to 0.25.
Although the mean accuracy of the identified
features for four datasets by SISPRO was lower
than tradition workflow, the variation was not
significant ranging from 0.006 to 0.055. All in all,
these results demonstrated that, compared with
traditional workflow, SISPRO has superiority in
improving the robustness of identified signatures
without sacrificing the accuracy. Such advantages
can be of great help to improve the reliability of
the identified signature in current proteomics
studies.

Biological interpretation using subcellular
functional annotation

As shown in the left panel of Figure 2, users can
choose their preferred organelle(s) to interpret the
subcellular location based biological functions for
those identified signatures. A total of 9 organelles
and 22 subcellular structures were provided in
SISPRO, which greatly satisfied the current needs
for spatial proteomics annotation. The annotation
result in Figure 2 was conducted based on the
signatures from JPST000934 dataset, which were
identified using the default pre-processing and
feature selection method in SISPRO. The list of
proteins with highest AUC and minimal signature
size were identified as the optimal signature list. In
this case study, two organelles including
Mitochondria and Nucleus were selected for
biological interpretation. As shown in Figure 2,
different protein functions and signaling pathways
that these proteins played in Mitochondria and
Nucleus were identified. The diversity of such
results was consistent with previous researches
that the same protein could play different functions
in different organelles. The biological pathway
identified for Mitochondria in this study was
oxidative phosphorylation (OXPHOS) together
with the detailed protein function of complex V
component. The original study of the JPST000934
dataset also reported that restoring OXPHOS had
potential in treating hematological malignancy and
overcoming chemoresistance,24 which further vali-
dated the accuracy of the identified signatures and
organelle-based annotation in SISPRO.
To further demonstrate the accuracy of organelle

and subcellular structure-specific biological
annotation in SISPRO, the biological relevance of
all interpretations for the signatures identified by
SISPRO for JPST000934 dataset in different
organelles was provided in Supplementary
Table S2, which was collected from a
5

comprehensive literature review in PubMed. Apart
from the OXPHOS and complex V component in
Mitochondria, there were other protein functions
and signaling pathways provided for these
proteins in Mitochondria, such as fusion and
fission of ATP5B, mtRNA stability and decay,
translation and mitophagy of LRPPRC, iron-sulfur
cluster biosynthesis of HSPA9 and so on.
Moreover, there were also other biological
interpretations in different organelles identified in
SISPRO such as angiostatin and MHC class I
protein binding function of both ATP5A1 and
ATP5B protein in Cell Membrane, and lipid
metabolism pathway of LRPPRC protein in
Peroxisome. All in all, these data provide strong
evidence of the accuracy and diversity of the
biological annotations in SISPRO, which is
essential for understanding the molecular
functions and cellular processes of proteins in
different organelles and revealing the disease
mechanisms based on spatial proteomics.

Biological interpretation by organelle-specific
PPI network

As provided in the left panel of Supplementary
Figure S1, users can choose their preferred
organelle(s) and subcellular structure(s) to
discover diverse PPI networks for those identified
signatures in different organelles, which largely
fulfils the needs for organelle-specific PPI network
analysis. Particularly, PPI network analysis in
SISPRO was conducted between the proteins that
located in the selected organelle(s) and
subcellular structure(s) and the identified
signatures. As shown in Supplementary
Figure S1, the proteins located in Mitochondria,
Endoplasmic reticulum and Cytosol were chosen
for further analysis. Four signatures identified from
JPST000934 dataset based on the default pre-
processing and feature selection method in
SISPRO were found to have interactions with the
proteins located in above three organelles. As
illustrated in Supplementary Figure S1, the
triangles in orange was on behalf of the identified
signatures, while the circles denoted the
interacting proteins located in the selected
organelles or subcellular structures. The edge
colors indicated the various organelles or
subcellular structures. For a specific signature, the
number of proteins with interaction in different
organelles varies considerably. To intuitively
present the differences of the PPI network in
various organelles, the PPI network was
conducted individually in a single organelle for the
same signatures. As shown in Supplementary
Figure S2, only three signatures were found to
interact with the proteins in Mitochondria, while
four signatures were discovered to have
interactions with the proteins in Nucleus, Golgi
apparatus and Endoplasmic reticulum. The most
and least number of interactions were in Nucleus



Figure 2. The organelle-specific signaling pathway and protein function interpretation enrichment result. In the left
panel, users can choose their preferred organelle(s) to interpret the organelle-specific protein functions and signaling
pathways for identified signatures. In the right panel, the enrichment result was presented in the form of interactive
collapsible tree, which was categorized by organelles and subcellular structures. All interpretations for these proteins
can be found via clicking the ‘Detailed interpretation for all identified signatures’, which was provided in the form of a
table. All results were downloadable online.
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and Endoplasmic reticulum, respectively. These
results above greatly showed the diversity and
variation of PPI network in different organelle(s)
and subcellular structure(s) conducted in SISPRO
and gave us a caution that the localization
information of proteins should not be ignored
when studying PPI.
Conclusion

In this study, the web server SISPRO constructed
for spatial proteomics was unique in both identifying
proteomic signature of good robustness and
accuracy and interpretating the identified signature
based on a comprehensive set of subcellular
annotation information. SISPRO provides the
endeavor to realize the simultaneous improvement
6

of robustness and accuracy in signature
identification and the unique capacity of SISPRO
in biological annotation lies in its wide coverage of
proteins and comprehensive spatial information.
Therefore, SISPRO was expected to be essential
and popular in current spatial proteomic studies.
Materials and methods

Collection of benchmark datasets

To assess the performance of SISPRO, six
benchmark datasets including 3 spatial proteomics
& 3 traditional proteomics datasets were collected
to conduct case studies in the Results and
Discussion section. These datasets were
collected from jPOSTrepo,25 PRIDE26 and
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PubMed.27 As shown in Supplementary Table S1,
three spatial proteomic datasets consisted of
JPST000934,24 PMID19833877,28 and
PXD010361.29 Meanwhile, three traditional pro-
teomic datasets were PXD001064,30

PXD003972,31 and PXD005144.32 Detailed
descriptions of these benchmarks were provided
in Supplementary Table S1.
Performance assessment for signature
identification
Robustness evaluating the reproducibility of
identified signatures from multiple sam-
pling. Robustness was defined as the
reproducibility among multiple lists of signatures
identified from different subsets of proteomic
data.20 Recent studies pointed out that the robust-
ness of the identified signatures should be given
as much importance as the prediction accuracy,33

which was regarded as one of the most effective
metrics for evaluating the performance of identified
signatures.34 Ignorance of robustness may result in
misleading conclusion.9 In other words, if the lists of
identified signatures for a given study were too sen-
sitive to the perturbation in the training data, it would
limit the interpretation and practical applications of
the results.33 Thus, the robustness of the identified
signatures should be a discriminative criterion for
performance assessment.
As more attention has been paid to the

robustness of identified signatures, several
measures were introduced for robustness
evaluation such as Kuncheva index,35 Dice-
Sorensen’s index,36 Tanimoto distance37 and so
on. However, a common problem that these mea-
sures met was subset-size-biased.11 In other
words, the larger the selected subset size, the
higher values of these measures tended to be
yielded.11 To avoid the subset-size-biased problem,
the relative weighted consistency (CWrel) was pro-
posed.38 The CWrel represented the overall robust-
ness among multiple lists of signatures, which was
calculated based on the occurrence of a specific
signature in each set of signatures and the total
occurrence of all features in all signature lists.22

The formula for calculating CWrel was as follows:

CWrel ðS;Y Þ ¼ jY jðN � D þP
f2YF f F f � 1ð ÞÞ � N2 þ D2

Yj j H2 þ n N � Hð Þ � D
� �� N2 þ D2

where |Y| represented the total number of all signatures
in the original data, S was defined as the set of the n
signature lists, f referred to any signature and Ff was
the number of occurrences of signature f, N denoted
the total number of occurrences of all identified
signatures, D was N mod |Y|, and H equaled N mod n.
CWrel ranged from 0 and 1, and the CWrel value

closer to 1 inferred the higher robustness of the
identified signatures. Due to its characteristic of
independence from the size of the feature subset,
7

CWrel was considered as a powerful indicator for
evaluating the robustness of identified signatures
and therefore adopted in SISPRO.

Accuracy assessing the prediction performance
of identified signatures. The goal of feature
selection in comparative biological research was
to identify a subset of signatures with the potential
to correctly discriminate classes of samples
(control & case),39–41 Thus, classification perfor-
mance of identified signatures was widely used in
proteomic studies to demonstrate the reliability of
these signatures.42 The receiver operator charac-
teristic curve (ROC) and area under the curve
(AUC) were well-established measures in evaluat-
ing classification performance.43,44 The AUC was
between 0 and 1. The higher the AUC value, the
better classification performance of the model.45

In SISPRO, the AUC was calculated by the
following steps. First, the classification model
based on the identified signatures was
constructed using the support vector machine
(SVM) method, where the R package e1071 was
used. Specifically, a 5-fold cross-validation was
adopted in order to avoid overfitting. The
parameters of kernel function, cost, gamma could
be defined based on the user’s preference. Then,
the ROC curve and the AUC value were plotted
and calculated via R package pROC.46 The list of
the signatures with highest AUC and minimum size
was selected for next analysis.

Database construction for organelle-specific
biological interpretation
Database of subcellular functional annota-
tion. Protein function was tightly associated with
its subcellular location.47,48 For example, IGFBP-
2, a major extracellular protein, took part in the insu-
lin growth factor signaling,49 while its translocation
to the nucleus led to vascular endothelial growth
factor-mediated angiogenesis.50 The rapid develop-
ment of spatial proteomics provided clues for better
understanding of protein functions in different loca-
tions. Such knowledge has also been applied in
multiple fields such as location biomarkers screen-
ing,51 disease mechanism understanding,52 drug
targets identification53 and drug discovery.54

However, inconsistency of protein subcellular
location information provided by existing
databases and lack of subcellular location specific
biological interpretation of proteins limited the
further understanding and practical application of
signatures discovered in spatial proteomics Thus,
a database providing protein subcellular functional
annotation was constructed in SISPRO. The
construction of the database was mainly divided
into two parts: (a) determining of the subcellular
location of human proteins; (b) interpretating these
proteins with subcellular location specific protein
function & signaling pathway information. First,
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protein subcellular location information from
UniProt55 and Human Protein Atlas1 was collected
and integrated. The different subcellular location
entries from the two databases were standardized
to 9 organelles and 22 substructures. Due to the
variation of the protein subcellular location from
the two databases, a comprehensive literature
review was conducted to improve the credibility of
the data. Specifically, keywords searching including
the protein name/gene name and its reported sub-
cellular location from the two databases mentioned
above was conducted in PubMed,27 and publica-
tions retrieved for each keywords combination
was carefully reviewed. All in all, the subcellular
locations of 16,366 proteins in 9 organelles and 22
substructures were identified.
To further provide subcellular location based

protein annotation, signaling pathway & protein
function information for each protein was first
extracted from Gene Ontology (GO) database.15

Then redundant information was manually
removed. To precisely elucidate protein function in
specific organelle or substructure, the keywords
combination such as “[protein name/gene
name] + [GO item] + [subcellular location]”, “[protein
name/gene name] + [GO ID] + [subcellular loca-
tion]”, “[protein name/gene name] + [subcellular
location] + pathway”, [protein name/gene name] +
[subcellular location] + function” and so on were
searched in PubMed.27 The corresponding results
retrieved were carefully reviewed. Finally, 148,116
annotation for 15,562 proteins in 9 organelles and
22 substructures were recorded. Users can choose
their preferred organelles and/or substructures to
interpret the identified signatures for a given study.
The full annotation provided by SISPRO was pre-
sent in a table and the annotation enrichment result
was displayed in the form of a collapsible tree.
Database of organelle-specific protein-protein
interaction (PPI). As the basis for most cellular
processes, protein–protein interaction (PPI) was
regarded as one of the most valuable sources for
proteome analysis.19,56,57 Moreover, increasing evi-
dence has demonstrated that the functions of PPIs
were closely related to their spatial distribution and
temporal dynamics.58 For example, interaction
between the mitochondrial dynamin-related
protein-1 (DRP1) with microtubule-associated
TAU protein (MAPT) could trigger excessive mito-
chondria fragmentation and synaptic defects, lead-
ing to neuronal damage.59

However, most available PPI data did not take the
subcellular location information of interacting
proteins into consideration, which would
deteriorate the reliability of studies, especially
subcellular-specific cellular processes. Thus, a
PPI database considering protein subcellular
location information was constructed in the
following steps. First, the keywords searching
including “[protein name/gene name] + interaction”,
8

“[protein name/gene name] + PPI”, “[protein
name/gene name] + protein–protein interaction”
was conducted in PubMed.27 Then the correspond-
ing results were carefully reviewed and the reported
PPIs were recorded. The subcellular location infor-
mation identified in the previous section was also
adopted in this section. Based on the PPIs and sub-
cellular location information of proteins, users can
find the interacting proteins of the identified signa-
tures that locate in their preferred organelles or
substructures.
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