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Abstract

In a drug formulation (DFM), the major components by mass are not Active Pharmaceutical Ingredient (API) but rather Drug Inactive
Ingredients (DIGs). DIGs can reach much higher concentrations than that achieved by API, which raises great concerns about their
clinical toxicities. Therefore, the biological activities of DIG on physiologically relevant target are widely demanded by both clinical
investigation and pharmaceutical industry. However, such activity data are not available in any existing pharmaceutical knowledge
base, and their potentials in predicting the DIG-target interaction have not been evaluated yet. In this study, the comprehensive
assessment and analysis on the biological activities of DIGs were therefore conducted. First, the largest number of DIGs and DFMs
were systematically curated and confirmed based on all drugs approved by US Food and Drug Administration. Second, comprehensive
activities for both DIGs and DFMs were provided for the first time to pharmaceutical community. Third, the biological targets of
each DIG and formulation were fully referenced to available databases that described their pharmaceutical/biological characteristics.
Finally, a variety of popular artificial intelligence techniques were used to assess the predictive potential of DIGs’ activity data, which
was the first evaluation on the possibility to predict DIG’s activity. As the activities of DIGs are critical for current pharmaceutical
studies, this work is expected to have significant implications for the future practice of drug discovery and precision medicine.
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Introduction
In a drug formulation (DFM), the major components
by mass are not Active Pharmaceutical Ingredient
(API) but rather Drug Inactive Ingredients (DIGs which
are also known as excipients) [1]. DIGs can usually
reach much higher concentration (up to 100 times in
gastrointestinal tract) than that achieved by API [2],
which raises great concerns regarding their clinical
toxicity [3], DIG-drug interaction [4], drug resistance [5–
8], etc. For instance, due to the great concerns about
the safety of DIG, any new medicine authorized in
Europe has to stipulate the quantitative details of DIGs in
‘Summary of Product Characteristics’ [3]. Since biological
activity of DIG on physiologically relevant targets is
widely demanded by both clinical investigations and
pharmaceutical industry [9], there is an explosive
growth of the studies exploring such valuable activity
information [9–16]. Particularly, various DIGs were found
to interact with therapeutic targets, drug transporters,
or drug metabolizing enzymes [10–13], and therefore

induce variation in drug bioavailability or toxicity [14–16].
Moreover, based on in-silico predictions and experimental
validations, a recent study systematically reveals that
the molecular interaction pattern of DIG is complicated,
which requires the extensively explicit descriptions on
the activity information of DIGs [9].

To facilitate the pharmaceutic studies based on the
DIG information [4, 17, 18], several valuable open-access
databases are available, which focus on providing the
maximum daily exposure to DIG [Food and Drug Admin-
istration (FDA) IID [19] and STEP [20]], DIG composition
within a DFM (Drugs@FDA [21] and Pillbox [22]) and
molecular structure of DIGs (Excipients Browser [23] and
Excipient Raman DB [24]). Although these databases are
popular for current pharmaceutic study, they do not pro-
vide any activity data for each DIG. Some other databases
contain the biological activity for different molecules
(such as ChEMBL [25], PubChem [26] and BindingDB [27]).
However, they provide very limited amount (<100) of
DIGs, which is far less than the total number (∼800)
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of DIGs in all FDA-approved DFMs [28]. In other words,
the vast majority (>80%) of DIG’s activity data remain
widely dispersed in literature [9–16]. Furthermore, for
those DIGs (<100) with activity information in available
databases, none of them is specified as DIG in the corre-
sponding databases, and no relationship to any drug/dis-
ease is indicated [25–27]. Based on those available data,
it is difficult to explore the DIG-dependent drug safe-
ty/efficacy and attract research interest from clinical
investigation or pharmaceutical industry [9, 29–36].

Here, a new database entitled ‘ACDINA: biological
activities of drug inactive ingredients’ was there-
fore developed (https://idrblab.org/acdina/). First, the
comprehensive literature review on all (>2000) drugs
approved by US FDA was conducted, which identified
a total of 23 949 DFMs that consisted of 711 unique
DIGs. These DIGs covered the very wide (>50) DIG-
functional classes as defined by the US Pharmacopeia
[37]. Second, the activities of these DIGs and their
corresponding biological targets were systematically
collected from literatures, which resulted in 351 DIGs
with explicit activity against 362 physiologically relevant
targets from 83 target families (ABC transporter, major
facilitator, GPCR rhodopsin, etc.). Third, the mapping
of DIG activities to their corresponding drugs further
resulted in 23 949 DFMs with ≥1 biologically active DIGs.
Fourth, all DIGs and biological targets were fully cross-
linked to well-established databases (including UniProt
[38], PubChem [26], TTD [39], NCBI Gene [26], VARIDT
[40], ChEMBL [25], Cellosaurus [41], INTEDE [42], etc.) to
facilitate the prediction of drug safety/sensitivity and
the assessment of DIG–drug interaction. Finally, various
machine learning (ML) techniques were applied to assess
the predictive potential of those newly collected data,
which gave the first assessment on the possibility to
predict DIG’s biological activity.

All in all, the ACDINA is unique in (i) describing the
largest number of well-defined DIGs and DFMs that are
manually curated and carefully confirmed using their
corresponding drugs, (ii) providing, for the first time, the
comprehensive biological activity data for both DIGs and
DFMs and (iii) fully referencing the biological targets by
cross-linking them to available databases that describe
their pharmaceutical/biological characteristics. As the
activity data of DIGs are critical for current pharma-
ceutical research and industry, ACDINA is expected to
have great implications for the future practice of drug
discovery and precision medicine [43, 44]. The ACDINA
can be freely accessed by all users at: https://idrblab.org/
acdina/.

Materials and Methods
Database implementation and access
of DIG-related information
ACDINA is deployed on a web server running Ubuntu
v16.04.3 LTS operating system, Apache HTTP web-
server 2.2.15 and Apache Tomcat servlet container. Its

web interface was developed based on PHP 7.1 and
Drupal 8.3.9. A variety of Drupal modules were utilized
in both data call and data presentation process. In
ACDINA, several dozens of data tables were stored
in MySQL v15.1 to facilitate the customized database
search. All ACDINA data are searchable and can be
readily accessed and retrieved using diverse browsers
such as Google Chrome, Mozilla Firefox, Safari and
Internet Explorer 10/later. To make the access/analyses
of ACDINA data convenient for users, the collected raw
data were carefully cleaned up and then systematically
standardized, which included the standardization of
DIGs/disease/target, the classification of DIGs/target,
the unification of activity unit, DIGs/target structure,
crosslinks to various reference databases and so on.
ACDINA has been smoothly running for months and
tested from various sites around the world. All ACDINA
data can be viewed online and are fully downloadable.
To improve the user experience, those downloadable
data were categorized to various groups, such as (i)
biological activities, (ii) DIG-related general/structural
data, (iii) formulation-related information, (iv) API-
related general/structural data and (v) DIG’s biological
target data. Currently, this database can be freely
accessed without login requirement by all users at:
https://idrblab.org/acdina/.

Data retrieval, processing and preparation
for model construction
The prediction of DIG-target interaction was conducted
using the biological activities collected to ACDINA. To
make the data fit for the construction of prediction
model, several steps of data processing were applied.
For each DIG-target pair, the DIG was first represented
by its structure in the SMILES format [45], and the target
was encoded based on its sequence in FASTA format [46].
Then, the DIG and target were digitalized by the Morgan
fingerprints of 1024 dimensions (with the ‘radius’ set to 2)
generated using RDKit package in Python [47] and the CTD
encoding technique integrated in PROFEAT sever [48, 49],
respectively. Third, all DIG-target pairs were divided into
interacting and non-interacting datasets according to
the biological activity of DIG to its corresponding target.
Particularly, each activity was represented based on the
popular unit of IC50, EC50 or Ki. The DIG-target pairs
of high interacting activity (<1 μM, which was widely
adopted by existing publication [50] to define the ‘active’
biological affinity) were grouped into the interacting
dataset (also known as the ‘positive dataset’ and labeled
as ‘1’), while the DIG-target pairs of low interacting
activity (>10 μM, which was commonly accepted by
the previous study [51] to indicate the ‘non-interacting’
pairs) were classified into the non-interacting dataset
(also known as the ‘negative dataset’ and labeled as
‘0’). Fourth, all DIG-target pairs collected from ACDINA
were represented by concatenating the DIG’s Morgan
fingerprint to the target’s CTD encoding feature, and the
Min-Max scaler method [52] was used to normalize the
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resulting vectors representing DIG-target pairs (all scaled
to [0,1]). Finally, 5-fold cross validation (CV) was applied
to assess the performance of the constructed models.

ML techniques for assessing the predictive
potential
To assess the predictive potential of DIG-target interac-
tion data collected in ACDINA, a variety of ML techniques
were used. These techniques included five classical
MLs [including support vector machine (SVM), naive
Bayesian (NB), random forest (RF), extreme gradient
boosting (XGBoost) and k-nearest neighbors (KNN)]
and two deep learnings [such as deep neural networks
(DNNs) and convolutional neural networks (CNNs)].
These techniques were integrated into the 5-fold CV,
which were implemented in Python (version 3.7.11).
The model’s hyperparameters were carefully tuned
using the optuna package, and the way to determine
these hyperparameters and the resulting optimized
parameters was explicitly described in the following
section.

Support vector machine

As one of the most widely applied supervised learning
methods, SVM model classified samples using hyper-
plane in high-dimension feature space [53]. Particularly,
it determined the decision boundary by finding a hyper-
plane with the maximum margin and was applied to
many aspects of biomedical research [54–64], such as
protein function annotation [65], drug–target interaction
[66] and drug-like property predictions [67]. Particularly,
sklearn package offered in the Python environment was
used to construct model for predicting DIG–target inter-
action. SVM projected the original feature vectors into
a high-dimension space using different types of kernel
function, among which the Radial Basis Function was
selected in this study to calculate the scalar product
between data points that represented two distinct DIG–
target interacting/non-interacting pairs. In this study, the
hyperparameter C and gamma were systematically opti-
mized using grid search, and the optimized values equaled
to 40 and 0.01 for C and gamma, respectively.

Naive Bayesian

The NB classifier was based on the Bayes’ theorem
with independence assumptions between predictors [68].
Although this assumption may be unrealistic for some
prediction tasks, NB classifier obtained outstanding
performances in pharmaceutical sciences and other
relevant directions, even though there were intrinsic
attribute dependency for some particular cases. The
NB described the conditional probability of an event
based on prior knowledge of an event, and calculated the
posterior probability of samples from distinct categories
and selected the category with high posterior probability
as the prediction result. The NB had no complicated
hyperparameter and was thus easy to be implemented,
which made it popular for different tasks. The NB has

been applied to identify new drug and target [69]. In this
study, the sklearn package was used to develop the NB
classifier by assuming a data distribution of multivariate
Bernoulli. The hyperparameters alpha and binarize were
optimized to 1 and 0.75, respectively.

Extreme gradient boosting

XGBoost is an ensemble learning technique based on
gradient boosting and decision tree, which was applied
to predict biological activity [70], miRNA-disease asso-
ciation [71] and subcellular location [72]. Particularly,
it is optimized model that combines the linear model
with a boosting tree one. In this technique, the decision
trees are created in sequential form, and the weights are
assigned to all independent variables which are then fed
into a decision tree. In training process, one tree was
built based on the loss generated by the previous weak
decision tree–based classifier in each iteration. Finally,
the XGBoost achieves stronger learning effect by inte-
grating multiple weak learners [73]. In this study, XGBoost
models were built based on xgboost package. Those essen-
tial hyperparameters n_estimators, learning_rate, colsam-
ple_bytree, max_depth, gamma and subsample were opti-
mized to 16, 0.05, 0.4, 3, 0.1 and 0.4, respectively.

Random forest

This technique is decision tree based, which has
hierarchical structure and is composed of nodes and
branches. It stands out from other tree-based mod-
els, and is an ensemble method [74]. This algorithm
used a set of mutually independent decision trees to
discover the solution to a specific problem. During
model construction, the RF grows the trees, and each
tree is then trained based on a subset of randomly
selected samples. Each decision tree is used to solve the
corresponding problem individually, which can produce
many classification results. RF ultimately determined
the overall solution by considering the majority of the
classification votes, which can effectively avoid the issue
of overfitting [75]. It has been applied to drug–target
interaction prediction [76] and drug discovery [77]. In this
work, this method was realized by ensemble package in
sklearn. Three hyperparameters (n_estimators, max_depth
and max_features) essential for constructing RF model
were optimized to 7, 5, and none, respectively.

K-nearest neighbors

When making a classification decision, KNN only
determines the class of the sample according to the
nearest sample or several samples in the feature space.
The K value was a constant defined by the user [78].
Although this technique is regarded as lazy learning, it
has been widely adopted in various directions of drug
discovery due to its good efficiency and high accuracy.
Particularly, it has been applied to drug repositioning
and the identification of drug-disease associations
[79]. Moreover, it has also been used to construct
quantitative structure–activity relationship model for
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virtually screening of small molecular inhibitors against
G-protein-coupled receptors [80], kinase [81], etc. In
this study, KNeighborsClassifier implemented in sklearn
package was applied to build the KNN classifier, and the
Euclidean distance was used to measure the distance
between any two DIG-target pairs. The hyperparameter
n_neighbors was optimized to 9.

Deep neural networks

The DNN (also known as multilayer perceptron) is a
fully connected neural network with many hidden layers
[82]. It realizes the feature learning of input data using
nonlinear transformation between simulated neurons,
and each layer is composed of various neurons [82]. As
a classical deep learning technique, it has been applied
to predicting pharmacological property of drug [83] and
identifying biomarkers in metabolomics studies [84]. In
this study, DNN classifier was built based on the pytorch
library, which contained three hidden layers with 512, 256
and 64 neurons. Neurons in each hidden layer were acti-
vated using a rectified linear unit (ReLU) function. The
output layer then generated the classification probability
for each DIG-target pair. The training procedure was the
well-established backward propagation algorithm imple-
mented using Adam optimizer [85]. The hyperparameter
of initial learning rate was set to 0.001.

Convolutional neural networks

The CNN is a feedforward neural network that uses con-
volutional and pooling operators, which has been widely
applied to the fields of computer vision [86], magnetic
resonance imaging [87] and drug discovery [88]. In this
study, the pytorch library was applied to build the one-
dimensional CNN [89], which consisted of seven distinct
layers: two convolutional layers, two max-pooling layers,
two fully connected layers and one softmax layer. Within
each of the convolution layers, 1 × 5 convolution kernels
were used to scan matrix. The first convolutional layer
had 64 different convolution kernels and the second one
had 128 kernels. After convolution layers, a 1 × 10 max-
pooling layer was then incorporated, and the resulting
matrix was then flattened and input into the fully con-
nected layers, which contained two layers of 512 and 64
neurons using the ReLU function. Finally, the softmax
layer was adopted to calculate the probability of different
categories. CNN model is optimized using Adam with a
learning rate of 0.001.

Three measurements were used in this study to assess
the predictive potential of the DIG-related data collected
for the ACDINA, which included accuracy (ACC), area
under receiver operating characteristic curve (AUC) and
Matthews correlation coefficient (MCC). The MCC is con-
sidered as one of the most comprehensive metrics due to
its collective considerations of both interacting and non-
interacting datasets, especially in case of the imbalanced
datasets (imbalanced numbers of data in datasets) [90].
MCC = 1 indicates the completely correct classification,
and −1 denotes the complete misclassification. For the

different models in each round of CV, MCC values were
adopted as the key criteria to facilitate the optimization
of hyperparameters.

Results and Discussion
Detailed information collected for DIG
To collect the comprehensive information of the DIGs,
multiple steps were applied in this study. First, the full
list of drugs approved by US FDA was collected from
DrugBank [91] and TTD [45], which led to >2000 FDA-
approved drugs. Then, a comprehensive literature review
on all these approved drugs was conducted, and a total
of 23 949 DFMs that consisted of 711 unique DIGs were
identified [19, 28, 92–95]. These DIGs covered the very
wide (>50) DIG-functional classes as defined from US
Pharmacopeia [37]. Third, all these identified DIGs were
manually matched with the compounds in PubChem
[96]. Since the name of certain DIG varied when it was
applied to different fields, a repository that contained the
diverse synonyms for all DIGs was comprehensively col-
lected via a literature review in PubMed and many other
existing pharmaceutical databases [19, 22, 25, 96]. More-
over, various molecule representation methods (such as
Canonical SMILES and InChI) were provided to facili-
tate the future estimations/model constructions based
on DIG structures. Fourth, various DIG functions in the
DFMs (that were critical to formulation design) were
carefully identified and systematically recorded based
on the well-defined classification system [28]. Some key
functions described in ACDINA included antimicrobial
preservatives, emulsifying agents, surfactants, buffering
agents, etc.

As illustrated in Figure 1 (the page describing a typical
DIG oleic acid), the general information of this DIG was
provided in the upper section, which included the DIG
name, a list of synonyms, DIG functions and the hyper-
links to the other existing pharmaceutical databases. At
the bottom section, the full list of APIs co-administrated
with this DIG was provided, and these APIs were clas-
sified based on the WHO ICD-11 of their corresponding
disease indication [97]. For each API, its specific disease
indication and references were shown. By clicking the
green ‘API Info’ button, the DIG page (Figure 1) will then
be redirected to the page that describes the detailed
information of the corresponding API.

Biological targets and activities of DIGs
Since the data of DIG activity are largely dispersed in
literature, the PubMed was systematically searched to
discover the interaction between DIGs and biological tar-
gets. Particularly, keyword combinations of ‘interactions
+ “DIG Name”’, ‘metabolism + “DIG Name”’, ‘biologi-
cal target + “DIG Name”’, ‘transporters + “DIG Name”’,
‘adverse reactions + excipient’, ‘inhibit + drug inac-
tive ingredient’, ‘inhibit + excipient’ and so on were
adopted for the literature review, and the resulting pub-
lications were manually assessed for retrieving any DIG
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Figure 1. The web page describing a typical DIG named oleic acid. The general information of this DIG was provided in the upper section, and the full list
of APIs co-administrated with this DIG was provided at the bottom. All APIs were classified by World Health Organization ICD-11 of their corresponding
disease indication. For each API, its specific disease indication and references were shown. By clicking the green ‘API Info’ button, this page will be
redirected to a new page showing the data of the corresponding API.

activities-related data. As a result, the collected data
included the biological target, the hyperlink to the addi-
tional data of this target in other existing pharmaceutical
databases (such as UniProt), experimental designs, the
tested species in that experiment and DIG’s experimen-
tally verified activity to its biological target. The latest
ACDINA provided 1318 activity data of 351 DIGs that reg-
ulate 362 biological targets from very diverse biochemical
families, such as G-protein-coupled receptor, cytochrome
P450, transporter and channel. As shown in Figure 2,
the distribution of the activity data among all DIGs col-
lected in ACDINA was provided. The vast majority (∼85%)
of the biological activities were ≥1 μM, and over 60%
of the activities were within the range between 1 and
100 μM. In other words, although a large number of DIGs
demonstrated their activities against some targets, their
corresponding interacting values (IC50/Ki) were not so
significant (especially when comparing with the interact-
ing values of APIs, which were usually ≤1 μM). However,
the DIGs can usually achieve much higher concentra-
tions (up to 100 times in gastrointestinal tract) than that
reached by API [2]. Therefore, those activities described
in Figure 2 raise serious concerns regarding their clinical
toxicity [3], DIG–drug interaction [4] and drug resistance
[5], which should be considered with caution. Moreover,

those experimental consequences of the studied activity
shown in ACDINA were also very diverse, which included
the regulation of enzyme function, influence of drug
efflux, alteration of target expressions and so on. All DIG
activities can be accessed and retrieved using the user-
friendly search strategies shown in ACDINA homepage,
DIG subpage (by clicking the ‘Drug Inactive Ingredient’
button in navigation bar) and target subpage (by clicking
the ‘Biological Target of DIG’ button).

As illustrated in Figure 3 (the page showing the DIG
benzoic acid), the general information of this DIG was
provided in the upper section (similar to Figure 1). At the
bottom section, the full list of biological targets (DBTs)
regulated by this DIG was provided, and all these targets
were classified based on their biochemical family. For
the particular example illustrated in Figure 3, there were
diverse families covered by the DBTs of this DIG, which
included G-protein-coupled receptors, oxidoreductase,
primary active transporter, lyase/isomerase/ligase and so
on. Within the family of primary active transporter, there
is a DBT named ‘Bile salt export pump’. The DIG-related
activity data were explicitly provided at the bottom
(biological target, hyperlink to the additional data of
this target in other existing databases, experimentally
tested species and DIG’s experimentally verified activity
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Figure 2. The distribution of the activity data among all DIGs collected in ACDINA. The vast majority (∼85%) of the biological activities were ≥1 μM, and
over 60% of the activity data were in the range between 1 and 100 μM. In other words, although many DIGs showed their activities against biological
target, the corresponding interacting values (IC50/Ki) were not so significant (especially when comparing with the interacting values of the APIs, which
were usually ≤1 μM).

data to its biological target). By clicking the orange ‘DBT
Info’ button, this page (Figure 3) will be redirected to a
new DBT page, which further provided the information
of DBT synonyms, biochemical family, tested organism,
gene name, etc.

Comprehensive description on DFMs approved
by FDA
The approved DFMs were collected from the official
website of the US FDA [21]. Moreover, some popular
databases (such as Pillbox and Drug Daily) were reviewed,
from which thousands of oral DFMs used in the market
were collected. Based on these collected data and
additional literature reviews in PubMed, a total of 23 949
DFMs approved by FDA were collected, which covered
over 2000 approved APIs. Particularly, these DFMs are
distributed in very wide range of dosage forms, and some
of the popular forms include extended-release tablet
(5136 formulations), extended-release capsule (1881
formulations), delayed-release tablet (962 formulations),
chewable tablet (617 formulations), delayed-release cap-
sule (542 formulations) and solution (227 formulations);
these DFMs also belong to the very diverse routes of

administration, and some top-ranked routes include oral
(23 529 formulations), intravenous (386 formulations),
subcutaneous (158 formulations), intramuscular (90
formulations), topical (97 formulations), ophthalmic (52
formulations), nasal (15 formulations), inhalation (12
formulations) and so on. Moreover, some of the new
drug delivery systems emerged in recent year have
also been included in the database. One of the typical
examples is the liposome [98], which is a lipid bilayer-
based spherical vesicle used as drug delivery system
for the administration of nutrients and drugs. With the
increasingly accumulated biological data for the new
systems, the impacts of ACDINA on the future practice of
drug discovery and precision medicine would be further
extended in the near future.

As illustrated in Figure 4 (the page showing the API
ranitidine), the general information of this API was pro-
vided in the upper section, which included the API name,
synonyms, clinical status, approved disease indications
with ICD-11 classification, and the hyperlinks to the
other existing pharmaceutical databases. At the bot-
tom, the full list of drug formulations (DFMs) that con-
tain this API is provided, and all these formulations are

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac160/6582006 by N

ational Science & Technology Library user on 07 O
ctober 2022



Activities of DIGs | 7

Figure 3. The web page describing a typical DIG named benzoic acid. The general information of this DIG was provided in the upper section, and full list of
biological targets (DBTs) regulated by this DIG was provided at the bottom. All targets were classified by their biochemical families. DIG-related activity
data were shown under the texts in green, which included biological target, hyperlink to the additional data of this target in other available databases,
experimentally tested species and DIG’s experimentally verified activity to its target. By clicking ‘DBT Info’ button, this page will be redirected to a new
page, which shows the data of DBT synonyms, biochemical family, tested organism, gene name and so on.

grouped based on their dosage, dosage form and route
of administration. Within each formulation, all DIGs and
corresponding dosage forms were explicitly described. By
clicking the orange ‘DFM Info’ button, current API page
(Figure 4) will be redirected to a new DFM page which is
illustrated in Figure 5.

As shown in Figure 5 (a page of DFM ranitidine 75 mg
tablet), the general information of this DFM was provided
in the upper section, which included the DFM name,
developers/companies, API and the full list of DIGs. At
the bottom, the full list of the biological targets (DBTs)
regulated by the DIGs in this DFM was provided, and
all these DBTs were grouped using their biochemical
families. For the particular example shown in Figure 5,
there were some families covered by the DBTs of this
DFM, which included G-protein-coupled receptors, oxi-
doreductase, transferase, hydrolase and so on. Within
the family of G-protein-coupled receptors, there is a DBT
named ‘adenosine receptor A3’. The DIG-related activity
data were explicitly provided at the bottom (biological
target, hyperlink to the additional data of this target in
other existing databases, experimentally tested species
and DIG’s experimentally verified activity data to its
biological target). By clicking the orange ‘DBT Info’ but-

ton, this page (Figure 5) will be redirected to a new DBT
page, which further provided the information of DBT syn-
onyms, biochemical family, tested organism, gene name,
etc.

Assessing the predictive potential of ACDINA
using ML
The application of AI technology to a specific research
and development direction has emerged to be very
popular, which has attracted great interest from numer-
ous research fields [99]. In the field of predicting
DIG-target interactions, the newly developed ACDINA
database in this study should therefore be considered
as a comprehensive and first-hand knowledge base
to meet the urgent demands of the related research
community. To have a preliminary understanding of
the predictive potential of the DIG’s biological activity
data in ACDINA, the ML techniques that have achieved
impressive performances in many other directions were
adopted in this study to enable an in-depth assessment.
There were seven techniques applied in this study,
which were five classical MLs (including SVM, NB, RF,
XGBoost and KNN) and two deep learnings (including
DNNs and CNNs). If the good prediction performance
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Figure 4. The web page describing a typical API named ranitidine. The general information of this API was provided in the upper section, and full list of
DFMs containing this API was provided at the bottom. All DFMs were grouped based on their dosage, dosage form and route of administration. Within
each formulation, all DIGs and corresponding dosage forms were explicitly described. By clicking the orange ‘DFM Info’ button, current API page will be
redirected to a new page illustrating the corresponding formulation.

could be obtained from these assessments, it would be
reasonable to expect an improved prediction result based
on ACDINA data by the application of more advanced
and sophisticated Artificial Intelligence techniques. The
detailed descriptions on each ML technique together
with the adopted performance assessment metrics were
explicitly shown in ‘ML Techniques for Assessing the
Predictive Potential’ section of Materials and Methods,
and the assessment results were provided in Table 1.

ACC and AUC were the popular metrics in perfor-
mance assessment. The ranges of these metric values
were from 0 to 1. As reported, a value (ACC/AUC) greater
than 0.7 was commonly used as an indicator of a good
prediction [100]. As shown in Table 1, DNN gave the
best ACC (0.8564) and AUC (0.8331) among all seven ML
techniques (0.8564). The ACCs of all seven techniques
and the AUCs of six techniques (except RF) illustrated
good prediction results (with the values of ACC/AUC over
0.7). In other words, these results showed that there

were great potentials in ACDINA data to facilitate the
prediction of new DIG-target interaction.

To assess the effect of imbalanced data on models’
prediction performance, the well-established metric
MCC was calculated and compared among different ML
techniques. As demonstrated in Table 1, DNN gave the
best MCC among all techniques (0.4610), while MCC of
XGBoost was the lowest (0.3002). On the one hand, the
variation among the MCC values of these techniques was
not so significant (all lower than 0.5), which indicated
that the prediction potentials of the ACDINA data among
seven MLs might be equivalent. On the other hand, the
MCC was within [−1,1] (‘1’ means completely correct
classification; ‘−1′ denotes complete misclassification;
‘>0′ indicates that the model is better than random
prediction), and the MCC values of all seven MLs could
thus be considered as fair. In other words, there were
great rooms for improvement (from <0.5 to 1), which
inspired us to conduct research to further improve the
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Figure 5. A web page demonstrating a typical DFM named ranitidine 75 mg tablet. The general information of this DFM was provided in the upper section,
and the full list of biological targets (DBTs) regulated by the DIGs in this DFM was provided at the bottom. All DBTs were grouped based on their
biochemical family. The DIG-related activity data were provided under the green text (biological target, hyperlinks to the additional data of this target
in other existing databases, experimentally tested species, DIG’s experimentally verified activity data to its biological target, etc.). By clicking the ‘DBT
Info’ button, this page will be redirected to another page providing the information of DBT synonyms, biochemical family, tested organism, gene name,
etc.

prediction performances by considering the imbalance
issue that was assessed using MCC.

In this study, a preliminary evaluation on the pos-
sibility to elevate the MCC was also conducted. Seven
methods that collectively considered all ML techniques
were proposed and evaluated in Figure 6. These methods

included ANY-M: the DIG-target pairs predicted as inter-
acting by any M (M = 1 ∼ 6) of the seven ML techniques
were considered as interacting; ALL-7: the DIG-target
pairs predicted as interacting by all ML techniques were
considered as interacting. As described in Table 1, there
was no significant improvement between those ACCs of
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Figure 6. Schematic flow chart of the applications of seven ML techniques and seven methods collectively considering multiple MLs for assessing the
predictive potential of DIG activity data collected in ACDINA. These seven techniques included five classical MLs (including SVM, RF, NB, XGBoost and
KNN) and two deep learnings (such as DNNs and CNNs). ANY-M: DIG-target pairs predicted as interacting by any M (M = 1 ∼ 6) of the seven ML techniques
were considered as interacting; ALL-7: the DIG-target pairs predicted as interacting by all seven ML techniques were considered as interacting.

Table 1. The performances of seven single ML techniques and seven methods collectively considering multiple ML techniques. These
techniques included five classical MLs (including SVM, NB, RF, XGBoost and KNN) and two deep learnings (such as DNNs and CNNs).
ANY-M: DIG-target pairs predicted as interacting by any M (M = 1 ∼ 6) of the seven ML techniques were considered as interacting;
ALL-7: the DIG-target pairs predicted as interacting by all seven ML techniques were considered as interacting. All models were
constructed and assessed based on 5-fold CV, and the performances reported below were the average values among five CVs

Technique/Method ACC AUC MCC

Single Technique SVM 0.8465 0.7441 0.3469
NB 0.8174 0.8143 0.3897
RF 0.8365 0.6985 0.3181
XGBoost 0.8398 0.7509 0.3002
KNN 0.8548 0.8212 0.4195
DNN 0.8564 0.8331 0.4610
CNN 0.8390 0.8142 0.4202

Collective Method ANY-1 0.8224 – 0.5635
ANY-2 0.8515 – 0.5298
ANY-3 0.8581 – 0.4820
ANY-4 0.8465 – 0.3835
ANY-5 0.8382 – 0.2932
ANY-6 0.8324 – 0.2049
ALL-7 0.8266 – 0.1744
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newly proposed seven Collective Methods and that of
the Single Techniques. However, the MCCs of both ANY-1
and ANY-2 were substantially increased comparing with
those of seven single techniques (all lower than 0.5).
These results showed that the prediction performance
assessed using MCCs could be further improved by opti-
mizing the architecture of ML techniques, and significant
improvement could be achieved if the advanced AI tech-
niques were applied in the future. All in all, based on
the assessment using different metrics above, the data
of DIG’s biological activities in ACDINA were expected to
have great potential to facilitate the prediction of novel
DIG-target interactions and other research directions in
pharmaceutical sciences.

Conclusion
This work (i) described the largest number of well-
defined DIGs and DFMs that were manually curated
and carefully confirmed using all FDA-approved drugs;
(ii) provided for the first time the comprehensive
biological activities for both DIGs and DFMs, and all
data were available and downloadable online; and (iii)
fully referenced the biological targets of each DIG and
formulation by cross-linking them to available databases
that provide their pharmaceutical/biological character-
istics. Moreover, various popular ML techniques were
used to assess the predictive potential of the collected
data, which was the first assessment on the possibility
to predict DIG’s biological activities. As the activity data
of DIG are critical for current pharmaceutical research,
this study is expected to give significant implication for
the future practice of molecular interaction [101–104],
drug discovery [105–111] and precision medicine [112–
115].

Key Points

• This study described the largest number of well-defined
DIGs and drug formulations (DFMs) that were manually
curated and carefully confirmed using all FDA-approved
drugs.

• This study provided, for the first time, the comprehensive
biological activity data for both DIGs and DFMs, and all
data were available and downloadable online.

• The study fully referenced the targets of each DIG and
formulation by cross-linking them to available databases
that describe their pharmaceutical/biological character-
istics.

• Machine learning was used to assess the predictive
potential of the collected data, which was the first
assessment on the possibility to predict the DIG’s biolog-
ical activity.
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