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Abstract

The discovery of proper molecular signature from OMIC data is indispensable for determining biological state, physiological condition,
disease etiology, and therapeutic response. However, the identified signature is reported to be highly inconsistent, and there is little
overlap among the signatures identified from different biological datasets. Such inconsistency raises doubts about the reliability of
reported signatures and significantly hampers its biological and clinical applications. Herein, an online tool, ConSIG, was constructed
to realize consistent discovery of gene/protein signature from any uploaded transcriptomic/proteomic data. This tool is unique in a)
integrating a novel strategy capable of significantly enhancing the consistency of signature discovery, b) determining the optimal
signature by collective assessment, and c) confirming the biological relevance by enriching the disease/gene ontology. With the
increasingly accumulated concerns about signature consistency and biological relevance, this online tool is expected to be used as
an essential complement to other existing tools for OMIC-based signature discovery. ConSIG is freely accessible to all users without
login requirement at https://idrblab.org/consig/
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Introduction
Discovery of proper molecular signatures from OMIC
data is indispensable in the determination of the biolog-
ical state, physiological condition, disease mechanism,
and therapeutic response [1–6]. However, the identified
signature is found to be highly ‘inconsistent’ [7–9]. Partic-
ularly, there is little overlap among the signatures iden-
tified from different datasets of certain biological study
[10, 11]. Such ‘inconsistency’ issue raises doubts about
the reliability of the reported signatures, and greatly
hampers their applications in biological sciences and
clinical investigation [12–15].

To address this issue, a novel feature selection strategy
was proposed and successfully validated using the
transcriptomic data of schizophrenia patients [16]. As
shown in Figure 1a, this strategy was constructed by:
α) integrating the repeated random sampling with
consensus scoring, and β) evaluating ranking consistency

among multiple datasets [16, 17], which can maximally
avoid the erroneous elimination of the molecular
features [17]. Because of its ability to effectively enhance
signature’s consistency, this strategy and its underlying
theory have attracted broad interest from and been
adopted by diverse communities, including biochemical
method [18, 19], plant sciences [20, 21], molecular
biology [22, 23], pharmaceutical sciences [24, 25], genetics
[26, 27], etc.

So far, various tools have been available online to
conduct OMIC-based signature discovery [28–34]. Some
of them utilize classic univariate strategies for feature
selection, such as GEPIA2 [28], ImaGEO [29] and MAINE
[30]. Some others integrate the multivariate ones for
eliminating non-significant molecular features, includ-
ing MetaboAnalyst [31], CausalMGM [32], OmicsAnalyst
[33], NOREVA [34, 35], etc. These tools are found to be
popular in their research communities, and the ‘clas-
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Figure 1. Schematic illustration of the unique functions provided by ConSIG. (a) the integration of novel feature selection strategy to substantially
enhance the consistency of signature discovery; (b) the determination of the optimal signature by collectively assessing signature consistency & classification
accuracy; (c) the confirmation of disease or phenotype relevance using enrichment analyses that are based on disease (DO) or gene (GO) ontology.

sification accuracy’ is frequently adopted as their pri-
mary criterion for model assessment [36–39]. However,
the existing tools do not integrate any strategy that can
enhance the robustness of signature discovery, and they
do not provide any assessment of ‘signature consistency’,
which should be collectively evaluated together with
‘classification accuracy’ [40, 41]. Moreover, with increas-
ingly accumulated concerns about the biological rele-
vance [42–45] of identified signature, it is important to
have a tool that describes the relevance between the
identified signature and the studied phenotype [46, 47].
In other words, it is urgently needed to have a tool that
provides these key functions to facilitate the OMIC-based
signature discovery [40–42].

Herein, an online tool named ConSIG was thus
constructed to realize the consistent identification of
gene/protein signature from any uploaded transcrip-
tomic/proteomic data. As shown in Figure 1, this online
tool works by a) integrating the novel strategy proposed
in our previous publication [16] to effectively guarantee
the consistent identification of molecular signatures,
b) determining the optimal signature by collectively
evaluating signature consistency and classification

accuracy, and c) confirming biological relevance by
enriching disease/gene ontologies [42, 46]. To the best of
our knowledge, ConSIG is unique in realizing the applica-
tions of our novel strategy (proposed in our previous work
[16]) to any genomic/transcriptomic/proteomic studies
relevant to signature discovery. With the increasingly
accumulated concern about both consistency [14, 48] and
biological relevance [42, 49] in signature identification,
this new online tool is expected to be popular and used
as an essential complement to other existing tools for
OMIC-based signature discovery. ConSIG is now freely
accessible without any login requirement at https://
idrblab.org/consig/

Materials and methods
Collection of benchmark datasets for
performance assessment
As described in Table 1, four proteomic/transcrip-
tomic benchmarks were collected for analyzing the
performances of the studied strategies according to
the following criteria [50, 51]: (a) datasets should be
comparative studies with only one control & case group;
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Table 1. Four benchmark datasets collected for analyzing the performances of the studied strategies, which included two proteomic
and another two transcriptomic datasets. The information of features, cases and controls were explicitly described, and relatively
diverse experiment platforms were applied for data generation, such as triple time-of-flight mass spectrometer (MS), quadrupole
orbitrap MS, and Affymetrix gene chip

Dataset Type ID of Studied Datasets Experimental Platform of
Studied Datasets

No. of Features Description on the Samples of Studied
Datasets

Proteomic
Benchmarks

IPX0001256000
[53]

Liquid Chromatography Triple
TOF 5600 Mass Spectrometer

1103 Proteins 21 urine samples from female donors
28 urine samples from male donors

PXD006129
[54]

Q Exactive Hybrid Quadrupole
Orbitrap Mass Spectrometer

3243 Proteins 15 samples from western-style diet-fed
mice
14 samples from chow diet-fed mice

Transcriptomic
Benchmarks

GSE31192
[57]

Affymetrix Gene Chip Human
Genome U133 Plus 2.0

12,128 RNAs 20 samples from pregnancy associated
breast cancer patients
13 samples from pregnancy non-associated
breast cancer patients

GSE23878
[58]

Affymetrix Gene Chip Human
Genome U133 Plus 2.0

20,212 RNAs 35 samples from colorectal cancer patients
24 samples from healthy individuals

(b) datasets should be derived from different biological
research directions; (c) the sample size for each group
(control and case) in a study should be six at least
and the sample size should be at least 20 for multiple
random sampling [52]; (d) feature names of the dataset
should be genes/proteins with identifiable UniProt ID
or ENTREZID for enrichment analysis. Particularly, two
proteomic datasets (IPX0001256000 [53] and PXD006129
[54]) were collected from the latest version of iProX [55]
and PRIDE [56], respectively. IPX0001256000 described
the expression levels of 1103 proteins among 49 urine
samples (21 samples from female donors & 28 samples
from male donors), and the PXD006129 provided the
concentrations of 3243 proteins among 29 samples (15
samples from western-style diet-fed mice & 14 samples
from chow diet-fed ones). The remaining two transcrip-
tomic datasets provided in Table 1 (GSE31192 [57] and
GSE23878 [58]) were collected from Gene Expression
Omnibus [59]. GSE31192 showed the expression profiles
of 12,128 RNAs among 33 individuals (20 from the
patients with pregnancy-associated breast cancer & 13
from the patients with non-pregnancy-associated breast
cancer), and GSE23878 demonstrated the intensity levels
of 20,212 RNAs among 59 samples (35 colorectal cancer
samples & 24 healthy individual samples). As described
in Table 1, diverse experimental platforms were applied
for generating these datasets [60, 61].

Classical feature selection strategies discussed in
this study
As shown in Table 2, six classical feature selection
strategies were included for analyses in this study,
which could be divided into two types (univariate and
multivariate) [62–64]. Three typical univariate strategies
were discussed, such as fold change (FC), univariate t-
test (t-test), and Wilcoxon rank-sum test (Wilcox) [65].
The FC is a widely used strategy reflecting variation
between case and control groups through calculating
the ratio of mean feature intensity between groups [66].
The t-test is a classical method based on the statistical

measurement of p-value, which considers a feature as
‘significant’ when its corresponding p-value is less than
0.05 [41]. Wilcox is known as a powerful alternative
to t-test, which utilizes the magnitude-based ranks to
assess the significant differences between groups [67].
Moreover, three multivariate strategies analyzed in this
study included correlation-based feature selection (CFS),
partial least squares-discriminant analysis (PLS-DA), and
ReliefF (REF) [68–70]. The CFS assesses the performance
of a set of features based on the prediction ability of each
feature in the set and the correlation between the feature
set and prediction ability [71]. PLS-DA establishes the
model to predict sample groups or discriminative vari-
able selection, which predicts the features maximizing
the difference between predetermined samples [72]. The
REF is an individual evaluation method, which detects
feature dependencies by estimating each feature based
on the identification of differences between features and
neighbors [73].

Metrics for signature consistency and
classification accuracy
One of the key features of ConSIG lay in its unique
function of identifying the optimal signature. To real-
ize such function, two independent criteria of ‘signature
consistency’ and ‘classification accuracy’ were collectively
considered [16, 17] to assess the performance of any
feature list, and two types of metrics were employed.
Detailed descriptions were provided as follows.

Metrics employed for assessing signature consistency

Herein, the relative-weighted consistency (CWrel) was
employed to assess signature consistency [74], which had
been frequently adopted as a well-established metric
for evaluating the robustness among various lists of
identified features [75–77]. Particularly, CWrel is a met-
ric calculated based on multiple feature lists [74]. It is
represented by the ratio between the number of occur-
rences of each feature in each feature list and the total
number of occurrences of all features in all lists [78–81].
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Table 2. Six classical feature selection strategies included for analyses in this study. These strategies could be divided into two types
(univariate and multivariate). Three typical univariate strategies analyzed in this study were: fold change (FC), univariate t-test
(t-test), and Wilcoxon rank-sum test (Wilcox). Three typical multivariate strategies were: correlation-based feature selection (CFS),
partial least squares-discriminant analysis (PLS-DA), and ReliefF (REF). Detailed descriptions of the mechanism underlying each
studied feature selection strategy were also provided.

Strategy Type Strategy Abbreviation Full Name of Studied
Strategies

The Description of the Mechanism Underlying Studied Strategies

Univariate
Strategies

FC Fold Change [66] Calculate the FC of each feature by taking the ratio of mean
intensities between the cases and controls, and rank the features
according to the FC values of all features.

t-test Univariate t-test [41] Rank all features based on their statistical differences measured by
p-values, and consider a feature as ‘significant’ when its
corresponding p-value is less than 0.05.

Wilcox Wilcoxon Rank-sum Test
[67]

Apply the magnitude-based ranks to establish the significant
difference between the case and control groups, which is a
non-parametric version of univariate t-test.

Multivariate
Strategies

CFS Correlation-based Feature
Selection [71]

Sort the feature subsets based on their predictive power and internal
correlation, and consider the subset of strong predictive power and
low correlation as significant.

PLS-DA Partial Least Squares
Discriminant Analysis [72]

Establish a model to predict case and control groups, and perform a
discriminative feature selection based on the predictive ability of the
established model.

REF ReliefF [73] Weight each feature based on how well it can distinguish between
case and control groups, and choose the features that can be most
distinguished between groups.

As reported, CWrel works much better than other metrics
for consistency assessment, since it has a superior ability
to deal with the problem of ‘subset-size bias’ [74]. The
value of CWrel is between 0 and 1, where 1 indicates that
all evaluated lists of identified features are identical.

Metrics employed for evaluating classification accuracy

Meanwhile, the area under the receiver operating charac-
teristic (AUC) and Matthews correlation coefficient (MCC)
was employed for evaluating the classification accuracy
[82–86], which had been frequently adopted as the pri-
mary criterion for model evaluation [36–38]. Particularly,
AUC assesses the diagnostic accuracy of a classifier con-
structed based on the identified signature [11, 83]. Com-
pared with AUC, MCC is known as a more balanced met-
ric, making it useful for unbalanced datasets [87–89]. In
other words, AUC together with MCC was simultaneously
provided for the assessment of classification accuracy. AUC
takes values between 0 and 1, while MCC takes values
between −1 and 1. For the two metrics, 1 indicates the
best authenticity of the test (for AUC) and the perfect
classification of all samples (for MCC) [82–85].

All in all, the optimal signature was identified by col-
lectively considering signature consistency and classification
accuracy. A larger CWrel value implies a more stable
list of identified features and better signature consistency.
A larger AUC/MCC denotes higher classification accuracy
[90, 91]. As shown in Figure 1b, the feature list giving
the largest CWrel value is not, for most cases, identical
to that offering the highest AUC/MCC. Therefore, both
metric types were collectively considered in ConSIG to
identify the optimal molecular signature (as illustrated
in Figure 1b).

Confirmation of biological relevance by
enrichment analyses
With increasingly accumulated concerns about the bio-
logical relevance [42–44] of the identified signature, two
types of enrichment analysis were enabled in ConSIG
(as illustrated in Figure 1c) to discover the relationship
between identified signature and a phenotype of inter-
ests [46, 92]. These two types of enrichment analysis were
based on disease (DO) and gene (GO) ontologies.

DO annotates genes/proteins in the context of disease
indication, which has been frequently used to translate
molecular findings from the high-throughput data to
clinical relevance [93–95]. ConSIG integrated the enrichDO
function in an R package entitled DOSE [96] to enrich all
genes/proteins in the identified signature. The enrichDO
function is based on ‘Disease Ontology’ database [93]
and TTD database of our research group [62, 97, 98]
that offer comprehensive annotation of human and
non-human genes/proteins to >10,000 disease ontology
terms. By integrating such databases into enrichment
analyses [99–101], ConSIG is able to describe the disease
relevance of the identified signature to the largest extent.
Particularly, DO-based enrichment results in ConSIG
were presented using the bubble map [102], the gene-
concept network [102], and the upset plot [96].

GO annotates genes/proteins in the context of biologi-
cal process, molecular function and cellular component
by a directed acyclic graph structure, which has been
widely adopted as popular way to search for shared func-
tions among genes/proteins by incorporating biological
knowledge from gene ontology [103]. ConSIG integrated
the enrichGO function in the clusterProfiler package [102]
of R environment to enrich all genes/proteins in the
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identified signature. The enrichGO function is based on
the well-known knowledge base of ‘Gene Ontology’ [103]
that gives a comprehensive annotation of gene/protein
to >45,000 terms. In ConSIG, GO-based enrichment result
was shown using the bubble map [102], the gene-concept
network [102], and the enrichment map [104].

Implementation details and functional modules
of online server
The official website of ConSIG (https://idrblab.org/
consig/) is deployed on a server with 128 GB RAM,
and CPU E7–4820 × 32 cores. This server runs a CentOS
Linux 7.6 operating system, an Apache Tomcat servlet
container, and an Apache HTTP web server 2.2.15. The
web interface was constructed using R v3.6.2 and R
package Shiny v1.7.1 running on the Shiny-server of
v1.5.7.907. A variety of R packages were utilized in the
background process, including VIM, e1071, ggplot2, DOSE,
topGO, clusterProfiler, pathview, enrichplot, mixOmics
and pROC [104–106]. ConSIG can be readily accessed
by all users without login requirements using various
web browsers, including Google Chrome, Mozilla Firefox,
Safari, and Internet Explorer (10 or later).

ConSIG is able to handle datasets in common formats
including txt, xlsx, tab-delimited and csv. The row names
of the input files required by ConSIG should be sample ID
and the column names should be gene/protein feature
ID. The ID of samples and features should be unique
and defined by user’s preference, but if the enrichment
analysis is required, the feature ID of the input file should
be annotated with UniProt ID or ENTREZID. In particular,
the second column indicates the category label (case or
control) for each sample, with the caveat that the number
of samples in each category should be no less than three.

Due to the cost of web connection and the shared
nature of the computational resource, the web-based
server was expected to be slower compared with the
standalone application. To figure out the time cost of
ConSIG, a proteomic benchmark PXD005144 [107] having
66 samples of patients with pancreatic cancer and 36
samples of patients with chronic pancreatitis was col-
lected for assessment. According to our evaluation, it
took about two minutes for ConSIG to finish the entire
identification process (as illustrated in Figure 1, from
signature discovery to signature optimization, then to enrich-
ment analysis). Among each step of the entire process,
signature discovery is the most time-consuming one, and a
functional module was therefore deployed to the online
tool for enabling the real-time monitoring of the identi-
fication progress (Figure 2). In other words, this module
gives a dynamic estimation and real-time monitoring of
the remaining time costs, which is valuable for users
who upload a relatively large dataset. Moreover, it may
take a much longer time when handling datasets with
a huge number (>10,000) of gene/protein features, and
a user-specific hyperlink (Figure 2) is therefore provided
to enable later retrieval of the result once the process is
finished.

Results and discussion
Consistent discovery of the molecular signature
from OMIC data
To illustrate the levels of consistencies of feature selec-
tion strategies when discovering molecular signatures,
four benchmarks (shown in Table 1) were analyzed. All
these benchmarks were case–control studies, and six
classical strategies (as described in Table 2) together with
ConSIG were systematically assessed by identifying the
differential signature using the benchmarks. As shown in
the ‘Metrics for Signature Consistency and Classification
Accuracy’ section of Materials and Methods, the metric
of relative-weighted consistency (CWrel) was employed to
assess signature consistency [74]. In particular, for each
benchmark dataset, 20 sub-datasets were first generated
via randomly selecting (for 20 times) half of the entire
samples, which followed the standardized bootstrapping
process enabling a random sampling with replacement
[108, 109]. Then, all strategies were applied to 20 sub-
datasets, and 20 lists of feature ranking were therefore
identified for each strategy. Third, 20 groups of features
ranked in the top 50% were selected from those 20 lists
of feature ranking, and CWrel was used to assess the
consistency among those 20 groups of features. Finally,
this step above was repeated by another 49 times (from
top 49%, to 48%, and finally to top 1%), which resulted in
50 CWrel values for each strategy and each benchmark.
The parameters involved in the process of accessing
consistency were determined as follows: (I) half of the
entire samples were selected for generating the widest
range of possible sample subsets; (II) randomly selecting
half of all samples 20 times is a trade-off between com-
putational efficiency and representativeness of consis-
tency; (III) the top 50% percent from the ranked features
were selected to encompass all the commonly used opti-
mal feature subset selection situations. As illustrated in
Figure 3, the levels of consistency of all strategies were
provided, and the ConSIG (blue color) was found to pro-
duce the best consistency in all benchmarks regardless
of the signature size (Top n%). For different datasets, the
levels of consistency elevation varied greatly. Compared
with the best-performing classical strategy, CWrel of Con-
SIG was elevated to 1.56 ∼ 2.77 times, 1.10 ∼ 1.54 times,
1.26 ∼ 1.53 times, and 1.03 ∼ 1.14 times for PXD006129,
IPX0001256000, GSE31192, and GSE23878, respectively.
This result showed the superior performance of ConSIG
in consistently discovering the gene/protein signature
from OMIC data.

For a more in-depth understanding of the consistency
elevation achieved by ConSIG, the stability among the
signatures identified from 20 sub-datasets was further
evaluated. As demonstrated in Figure 4, the features
identified from 20 sub-datasets randomly generated
based on PXD006129 benchmark varied significantly.
Taking the sub-figure in the upper right corner as an
example, x-axis illustrated the number of sub-datasets
that identified an identical feature (from 1 to 20), and
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Figure 2. Screenshot of the functional module deployed to the online ConSIG for enabling real-time monitoring of the signature identification progress.
This module gives a dynamic estimation and real-time monitoring of the remaining time costs, which is valuable for users who upload a large dataset.
Moreover, it may take a much longer time when handling datasets with a huge number (>10,000) of gene/protein features, and a user-specific hyperlink
is therefore provided to enable later retrieval of the result once the process is finished. The information displayed online included three sections: real-
time monitoring of discovery progress and the performance report, dynamic performance evaluation in chronological order, and monitoring of the
feature elimination process.

y-axis demonstrated the percentage of features among
all features that were identified by 20 sub-datasets. As
provided in this sub-figure, a large number (29.1%, the
highest bar on the right-most side) of the identified
features were simultaneously found by all 20 sub-
datasets, which indicated a significant elevation of
consistency compared with classical strategies (shown
in the remaining 6 sub-figures on the right column
of Figure 4, only a very small fraction (<3.0%) of the
identified features could be simultaneously found by
all sub-datasets).

Moreover, to have a systematical view of the signa-
ture consistency, a new metric named ‘percent’ was

further calculated, which indicated the percentage of
features simultaneously found by over half (>10) of all
20 sub-datasets. The larger the ‘percent’ value is, the
more consistent the studied strategy is. As shown in
Figure 4 (seven sub-figures on the right side), ConSIG
showed superior consistency (‘percent’ = 60.1%) com-
paring with the classical ones (‘percent’ = 23.5 ∼ 37.8%).
In the meantime, the values of CWrel in all sub-
figures could reach the same conclusion. That is to
say, ConSIG showed superior consistency comparing
with the classical ones, since the CWrel of ConSIG
(0.72) was much higher than that of the classical ones
(0.17 ∼ 0.38).
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Figure 3. The consistency of seven studied strategies when discovering the molecular signature. For each benchmark, 20 sub-datasets were first generated
by randomly selecting half of the entire samples. Then, all strategies were applied to 20 sub-datasets, and 20 lists of feature ranking were thus identified
for each strategy. Third, 20 groups of features ranked in the top 50% were selected from those 20 lists of feature ranking, and CWrel was used to assess
the consistency among those 20 groups of features. Finally, the above step was further repeated by another 49 times (from top 49%, to 48%, finally to top
1%), which led to 50 CWrel values for each strategy and each dataset. As described, ConSIG was found to produce the best consistency in all datasets
regardless of the signature size (Top n%). In different datasets, the levels of consistency elevation varied greatly.

Figure 4 also illustrated the consistency variations
induced by different signature sizes (Top 10%, 20%, 30%,
and 40%). As well-known, the Top n% of the ranked
features were frequently selected as markers in bioinfor-
matics studies [110–112]. As shown in Figure 4, with the
decrease of n%, the consistency of each strategy reduced
gradually as assessed using both ‘percent’ and the height
of the bar on the right-most side of each sub-figure.
Moreover, CWrel of ConSIG (0.72 ∼ 0.76) was significantly

and robustly higher than that of the classical ones
(0.15 ∼ 0.42). Besides PXD006129, the features identified
from 20 sub-datasets randomly generated based on
the other three benchmarks (IPX0001256000, GSE31192,
and GSE23878) were explicitly shown in Supplementary
Figure S1, S2, and S3, respectively. All in all, despite the
heterogeneity among 20 different sub-datasets, ConSIG
was able to consistently discover the gene/protein
signature from OMIC data.
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Figure 4. Consistency variation of seven feature selection strategies induced by various signature sizes (Top 10%, 20%, 30%, and 40%). The features
identified based on 20 sub-datasets randomly generated based on PXD006129 varied greatly. The x-axis illustrated the number of sub-datasets that
identified the identical feature (from 1 to 20), and the y-axis demonstrated the percentage of features among all features that were identified by 20
sub-datasets. To have the systematical view on signature consistency, the metric ‘percent’ was calculated, which indicated the percentage of features
simultaneously found by over half (>10) of all those sub-datasets. The larger the ‘percent’ value is, the more consistent the studied strategy is.

Identification of the optimal signature using
collective assessment
With the elevation of signature consistency by ConSIG, it is
of great interest to further investigate how classification
accuracy is affected. In other words, such elevation of
consistency should not be accompanied by an obvious
sacrifice of the predictive capacity between different
phenotypes [82–85]. The optimal signature was there-
fore identified in ConSIG by collectively assessing both
criteria of signature consistency and classification accuracy

(illustrated in Figure 1b). As metrics for assessing both
criteria of signature consistency and classification accuracy
are positively correlated with the assessed criteria and
have the same range of values, ConSIG thus directly
summed the values of two types of metrics to fairly and
collectively consider both criteria without any bias or
preference. As shown in the ‘Metrics for Signature Con-
sistency and Classification Accuracy’ section of Mate-
rials and Methods, two measures of the area under
the receiver operating characteristic (AUC) and Matthews
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correlation coefficient (MCC) were employed for evaluat-
ing the classification accuracy [82–85]. Compared with AUC,
MCC is known as a more balanced metric, making it use-
ful for unbalanced datasets [87, 88] that were frequently
encountered in OMIC datasets such as IPX0001256000
and GSE31192 in Table 1. Therefore, the CWrel together
with both AUC and MCC were calculated and collectively
considered in this study to discover the optimal signa-
ture.

Herein, two benchmarks (GSE31192 & IPX000125600 in
Table 1) were collected for calculating the metrics of both
criteria (signature consistency and classification accuracy).
Particularly, for each benchmark dataset, 20 sub-datasets
were first generated through randomly selecting half of
the entire samples [108, 109]. Then, those six classical
strategies (provided in Table 2) and ConSIG were applied
to each of the sub-datasets, and 20 lists of feature rank-
ing were therefore identified for each strategy. Third, 20
groups of top-ranked features (Top n%, n = 1, 3, 5, 10, and
20; those columns shown in Figure 5) were selected from
those 20 lists of feature ranking, and CWrel was calcu-
lated to measure signature consistency. Fourth, the same
groups of top-ranked features as that selected above
were also used to build classifiers using 5-fold cross-
validation based on their corresponding sub-dataset, and
the AUC and MCC were calculated to measure the clas-
sification accuracy [113–115]. It is important to emphasize
that the principle underlying the calculation of each met-
ric determines that only one CWrel is generated for each
dataset and a total of 20 AUCs/MCCs were generated for
all 20 sub-datasets. Finally, the collective assessment of
each strategy was shown as the scatter plots with error
bars in Figure 5 (the x-axis indicated the values of CWrel,
and the y-axis gave the values of either AUC or MCC).
As illustrated, under all circumstances, ConSIG showed
superior consistencies comparing with the classical ones
(the blue points indicating ConSIG were far closer to 1
comparing with all other strategies as assessed by CWrel).
Moreover, the ConSIG showed comparative (even bet-
ter, under most circumstances) classification accuracy
comparing with the classical ones (the blue error bars,
under most circumstances, were closer to 1 comparing
with other strategies as assessed by either AUC or MCC).
Since IPX0001256000 and GSE31192 in Table 1 were both
unbalanced datasets, it is recommended to use MCC
as the primary metric [116–118]. In other words, the
performance of ConSIG on classification accuracy was also
obviously better than other strategies (the second and
fourth rows in Figure 5).

As reported, some cutoffs of metrics were defined to
classify the performance of feature selection strategy.
Particularly, the number of 0.5 was proposed to divide
CWrel into good (≥0.5) and poor (<0.5) consistency, the
number of 0.7 was defined to classify MCC into good
(≥0.7) and poor (<0.7) predictive ability, and the num-
ber of 0.8 was considered to categorize AUC into good
(≥0.8) and poor (<0.8) classification accuracy accord-
ing to experiences from previous publications [76, 119,

120]. Based on these cutoffs, each sub-figure in Figure 5
was further colored to different zones. The strategies
within the green zone indicated that they performed
‘good’ for both signature consistency and classification accu-
racy, the strategy within orange zone showed that it
performed ‘good’ under one criterion but ‘poor’ under
the other, and the strategies in red zone denoted that
they performed ‘poor’ under both criteria. As described in
Figure 5, ConSIG was always in the green zone regardless
of the datasets and the signature sizes, which was very
different from other strategies. Moreover, the error bars
(measuring AUC/MCC) of ConSIG gave a much smaller
variation comparing with other strategies, which fur-
ther showed its superior stability in classification accuracy
regardless of analyzed dataset. All in all, ConSIG showed
its unique ability to discover the optimal signature based
on collective assessment.

Confirmation of biological relevance based on
enrichment analysis
For biologists and clinicians who study on OMIC data,
the identification of consistent and accurate signature is
not the end of the story, and further confirmation of the
biological relevance of the identified signature is usually
required [121–123]. Thus, the essential function to con-
firm biological relevance was realized in ConSIG based
on an enrichment analysis using disease/gene ontologies
[42, 46]. Particularly, two types of enrichment analysis
were enabled in ConSIG (as illustrated in Figure 1c) to
discover the relationships between identified signature
and a phenotype of interests [46]. These two types of
analysis were based on the databases of the disease (DO)
and gene (GO) ontologies [93, 103]. In ConSIG, DO & GO-
based enrichment results were visualized using bubble
map [102], upset plot [96], enrichment map [104], and
gene-concept network [102].

To assess the biological relevance of various signa-
tures identified by ConSIG and other classical strategies,
the benchmark dataset GSE23878 was collected, which
had been used to discover the differentially expressed
genes [58] between the patients with colorectal carci-
noma (CRC) and the healthy individuals. First, six clas-
sical strategies (as described in Table 2) together with
ConSIG were applied for selecting the differential genes
from GSE23878. Then, the top-100 ranked genes identi-
fied by each strategy were recorded, which resulted in
seven lists of gene biomarkers. Third, to illustrate the
variations among these seven marker lists, two Venn-
plots were drawn to describe the differences between the
marker list of ConSIG and that of three univariate strate-
gies (Figure 6a) & three multivariate ones (Figure 6b).
As shown, there were only 12 markers simultaneously
identified by ConSIG and three univariate strategies (FC,
t-test, and Wilcox), and no marker was constantly discov-
ered by ConSIG and three multivariate ones (CFS, PLS-
DA, and REF). Among the top-100 gene markers, about
50% of them were solely identified by their own strategy,
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Figure 5. Performance comparison on signature identification using collective evaluation among seven studied strategies. Two benchmarks (GSE31192
and IPX000125600 described in Table 1) were collected to calculate the metrics of both criteria ‘signature consistency’ and ‘classification accuracy’. The x-axis
denoted the value of CWrel (measuring signature consistency), and y-axis gave the value of either AUC or MCC (measuring classification accuracy). Based
on the cutoffs previously reported, the number of 0.5 was proposed to divide CWrel into good (≥0.5) and poor (<0.5) consistency, the number of 0.7 was
defined to classify MCC to good (≥0.7) and poor (<0.7) predictive ability, and the number of 0.8 was considered to categorize AUC into good (≥0.8) and
poor (<0.8) classification accuracy (59,87,88). Based on the cutoffs, each sub-figure was further colored to different zones. The strategy within the green
zone indicated that its performed ‘good’ under both signature consistency and classification accuracy, the strategy within the orange zone denoted that it
performed ‘good’ under one criterion but ‘poor’ under the other, and the strategies within the red zone denoted that they performed ‘poor’ under both
criteria.

which indicated that there is significant variation among
signatures identified by different strategies.

Because of the above variation among different signa-
tures, it was of great interest to assess how different sig-
natures affect their biological relevance [124–126]. There-
fore, the top-100 ranked markers were first enriched
using disease ontology (DO) database [93]. Then, the Top-
5 DO terms (of the most significant p-value) enriched
for each strategy were recorded, which led to a total
of 5 × 7 = 35 DO terms. As shown in Figure 6, a compar-
ison between the enriched DO terms for ConSIG and
that for three univariate strategies (Figure 6c) & three
multivariate ones (Figure 6d) was given. For a reasonable
signature discovery, the identified DO terms should be
closely related to the studied phenotype. In this case, a

good strategy should be able to enrich DO terms that are
closely related to ‘colorectal carcinoma’, since it is the
key phenotype of the studied benchmark GSE23878 [58].
Therefore, to assess the disease relevance, a reputable
database titled MalaCards was introduced [127]. MalaC-
ards is an integrated compendium of annotated diseases,
and it enables the intelligent matching between an input
DO term and its built-in disease annotations [128—].
In other words, by matching each of the enriched DO
terms with ‘colorectal carcinoma’, MalaCards returned
a score indicating the relevance between a DO term
and ‘colorectal carcinoma’. The larger the score is, the
closer the relevance is. As shown in Figure 6c and 6d,
MalaCards scores for all enriched DO terms were pro-
vided in the right-most column, and all enriched terms
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Figure 6. Disease relevance of these signatures identified by different strategies. The Venn plots were used to describe the differences between the
markers of ConSIG and that of three univariate strategies (a) & three multivariate ones (b). The top-5 DO terms (of the most significant p-value) enriched
for each strategy were recorded, which led to a total of 5 × 7 = 35 DO terms. A comparison between those enriched DO terms for ConSIG and that for
univariate strategies (c) & multivariate ones (d) was provided. A good strategy should be able to enrich DO terms that are closely related to ‘colorectal
carcinoma’, since it is the key phenotype of the studied benchmark GSE23878 (50). Therefore, the MalaCards database was introduced to match each of
the enriched DO terms with ‘colorectal carcinoma’. MalaCards returned a score indicating the relevance between a DO term and ‘colorectal carcinoma’.
The larger the score is, the closer the relevance is. CR: cancer-related; nm: not matched.

were ranked based on their MalaCards scores. CR indi-
cated ‘cancer-related’, and nm denoted ‘not matched’.
In other words, some DO terms were not matched to
‘colorectal carcinoma’ using MalaCards, which indicated
a weak or no relation. As shown, the DO terms iden-
tified by ConSIG gave much closer relation to ‘colorec-
tal carcinoma’, because they were ranked at the top of
Figure 6c and 6d comparing with the terms discovered
by classical strategies (FC, t-test, Wilcox, CFS, PLS-DA,
and REF).

Conclusion and perspectives
A novel feature selection strategy was proposed and suc-
cessfully validated in our previous study [16]. The under-
lying theory of this strategy had attracted broad interest
from and been used by a wide range of research fields.
However, our previous study only focused on the tran-
scriptomic data of schizophrenia patients, which asked for
the broad and user-friendly applications to other OMIC-
related direction. To make this new strategy public to all
users (especially those with little computational skills),

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/4/bbac253/6618243 by N

ational Science & Technology Library user on 20 July 2022



12 | Fengcheng et al.

the ConSIG was developed to a) integrate the novel strat-
egy proposed in our previous study to effectively guar-
antee the consistent identification of gene/protein signa-
ture, b) discover optimal signature by evaluating both sig-
nature consistency & classification accuracy, and c) confirm
biological relevance by enriching disease & gene ontolo-
gies. ConSIG has been comprehensively and adequately
validated in proteomics and transcriptomics data with
different research directions and is expected to be used
as an essential complement to other existing tools for
OMIC-based signature discovery, which can be accessed
by all users without login requirement at https://idrblab.
org/consig/
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Key Points

• ConSIG introduces a novel strategy proposed in our pre-
vious study to research community by effectively guar-
anteeing the consistent discovery of molecular signature

• ConSIG determines the optimal signature by collectively
assessing signature consistency and classification accuracy
based on a variety of evaluating metrics

• ConSIG confirms the biological relevance by enriching
both disease and gene ontologies
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