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A B S T R A C T   

Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive 
efforts to develop effective prediction method. However, the existing methods tend to amplify the representa
tiveness of the families with large number of proteins by misclassifying the proteins in the families with small 
number of proteins. That is to say, the ability of the existing methods to annotate proteins in the ‘rare classes’ 
remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep 
learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, 
with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method 
was introduced to the model construction for further improving the prediction performances. Third, based on the 
latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families 
comparing with the existing methods. Finally, this newly constructed model was found capable of significantly 
elevating the prediction performance for the ‘rare classes’ without sacrificing that for the ‘major classes’. All in all, 
due to the emerging requirements on improving the prediction performance for the proteins in ‘rare classes’, this 
new strategy would become an essential complement to the existing methods for protein function prediction. All 
the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.   

1. Introduction 

Proteins participate in most of the physiological functions/biological 
processes in a living system by two main ways [1–4]. One is to join the 
formation of tissues or organs as the structural proteins, and the other is 
to involve in the signal transduction, immune response, and biochemical 
reaction as the functional proteins [5–8]. The functional study of protein 
can help to understand its various mechanisms of cellular response and 
is of great significance for the discovery of drug targets and the study of 
the physiological/pathological process [9–11]. With the maturity of 
next-generation sequencing, a large number of protein sequences have 
been produced [12]. The UniProt database provides ~200 million se
quences, but <1% of these proteins have been experimentally annotated 
[13–18]. Due to the time-consuming and labor-intensive nature of the 
experiment annotation [19–21], it is urgently needed to develop the 

methods enabling bioinformatic annotation [22]. 
However, bioinformatic annotation of protein function, as well- 

known, is very sophisticated [23], and the extensive effort has been 
devoted to the development of related methods [24]. There are two 
distinct types of bioinformatic annotation approaches which are based 
on sequence similarity and machine learning, respectively [25]. The 
fundamental principle of sequence similarity-based methods is that the 
proteins with similar sequences are likely to have similar functions, 
which is also known as the sequence homologous transfer [26–32]. So 
far, a variety of tools based on this method have been publicly available 
for all users, which include BLAST [33], GoFDR [34], etc. Although these 
tools have attracted extensive interests from relevant research commu
nities, their innate limitations still need to be carefully considered [34, 
35]. First, when the sequence identity is lower than a certain point 
(~60%), the annotation accuracy of this method will be significantly 
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affected [36,37]. Second, the time cost in similarity search needs to be 
reduced [38]. 

To cope with these limitations, the machine learning (ML) based 
methods have been constructed [39–50]. Particularly, the ML-based 
methods are unique in their ability to identify the functional homol
ogy irrespective of sequence similarity, which makes them powerful in 
annotating proteins of low sequence identity [51]. Moreover, the model 
constructed using ML-based methods usually demonstrates the fast 
process of functional annotations [52]. Till now, diverse tools based on 
this method have been developed, which are publicly available to all 
users for the function annotation [53,54]. As one of the most powerful 
and popular annotation tools, DeepGO has been developed, which pre
dicts the protein functions from sequence and interactions using a deep 
ontology-aware classifier [53]. Based on the first version of DeepGO, 
two upgraded versions (DeepGOCNN and DeepGOPlus) have also been 
developed using multi-kernel convolutional neural network (CNN) and 
the combination of CNN and sequence similarity, respectively [54]. 
However, both methods (based on sequence similarity & machine learning) 
tend to amplify the representativeness of the families with large number 
of proteins by misclassifying the protein in families with less proteins 
[55]. In other words, the ability of the existing methods/tools to anno
tate the proteins in the ‘rare classes’ remains limited [56]. Due to the key 
role played by the proteins in such ‘rare classes’ as calcium ion homeo
stasis family important to cell signaling, hormone regulation, and bone 
health [57], adenine nucleotide transporters key to attenuate the 
myocardial ischemia-reperfusion injury [58], microtubule motor activ
ity family essential for the transportation of substances within cells [59], 
etc., it is essential to construct new strategy to significantly elevate 
annotation performance for rare classes without sacrificing that for the 
major ones. 

In this study, a novel protein functional annotation strategy that 
integrated multiple deep learning methods (PFmulDL) was therefore 
constructed. First, a recurrent neural network (RNN) method was inte
grated, for the first time, with a multi-kernel CNN method to facilitate 
protein functional annotation. Second, the transfer learning (TL) method 
was introduced to model construction for further improving annotation 
performance. Third, based on the latest dataset collected from the Gene 
Ontology (GO) [60], PFmulDL became a tool capable of annotating the 
largest number of GO families. Finally, our newly developed PFmulDL 
was compared with various available tools (both sequence similar
ity-based & machine learning-based), and found to be able to significantly 
elevate the annotation performance for ‘rare classes’ without sacrificing 
that for the ‘major ones’. All in all, due to the emerging requirement on 
improving the annotation performance for proteins in rare classes, the 
PFmulDL would become an essential complement to those available 
tools in the field of protein function annotation. 

2. Materials and Methods 

2.1. Data Collection for Model Construction and Assessment 

Gene Ontology (GO) [60] provided comprehensive descriptions on 
genes and their products, and divided the biological functions of protein 
into three groups: Biological Process (BP), Molecular Function (MF), and 
Cellular Component (CC). The GO encapsulated protein function anno
tation into a directed acyclic graph. Each node in the graph is called a 
GO term, and the edges represent specified parent to child relations 
between the terms [61]. Protein annotations are thus considered as the 
hierarchical multi-label classification (HMC) task. In this case, if a pro
tein is predicted to a certain GO term, then it will be labeled to all the 

Fig. 1. Schematic illustration of the hierarchical multi-label structure of GO families (labeled by fi). BP, MF and CC were three root nodes at the top of the structure, 
and the remaining families were hierarchically connected to them. In this study, the level of root nodes was defined as ‘Level 1’ (green). The child families directly 
connected to the root nodes were labeled as ‘Level 2’ (red). Then, the families of ‘Level 3’ were defined by those child families directly connected to ‘Level 2’. The 
following levels can be thus deduced in the similar manner. Based on our comprehensive evaluation on all GO data, the bottom level of GO’s hierarchical multi-label 
structure was ‘Level 10’, which had no child family and composed of the smallest number of proteins comparing with the families in other levels (Level 1 to Level 9). 
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parent terms of that specific GO term [62,63]. Particularly, the hierar
chical structure information about GO data was from the go.obo file 
which was downloaded from GO website, and the protein sequences 
were from a uniprot_sprot.dat file downloaded from UniPort. As a result, 
a total of 67,888 protein sequences with explicit GO term were collected. 
Like existing tools [53,54], only those GO families with relatively large 
number of proteins (>50) were included into model construction, which 
contained a total of 5825 protein sequences (77% BP terms, 12% MF 
terms, and 11% CC terms). 

Within the downloaded go.obo file, GO families were represented in 
the hierarchical multi-label structure. Particularly, BP, MF, and CC were 
three root nodes at the top of the structure, and the remaining GO 
families were hierarchically connected to those root nodes. In this study, 
the level of root nodes was defined as ‘Level 1’ (also known as the Top 
Node, illustrated in Fig. 1). The child families directly connected to the 
root nodes were grouped to ‘Level 2’. Then, the families of ‘Level 3’ were 
defined by those child families directly connected to the families in 
‘Level 2’. The following levels can be therefore deduced in the same 
manner. Based on our comprehensive evaluation on all GO data, the 
bottom level of GO’s hierarchical multi-label structure was ‘Level 10’, 
which had no child family and composed of the smallest number of 
proteins comparing with the families in other levels (Level 1 to Level 9). 
As demonstrated in Fig. 2, the average (green) and median (brown) 
numbers of proteins in the families of nine different levels (Level 2 to 
Level 10) were described. As illustrated, there was a clear descending 
trend of both average and median numbers from the top level (Level 2) 
to the bottom one (Level 10). Since the numbers of proteins in particular 
families indicated the representativeness of the corresponding families 
in the model construction, it was reasonable to say that the represen
tativeness of a family gradually decreased with the penetration into a 
deeper level. Therefore, the representativeness of each GO family was 
classified into three groups (as shown in Fig. 2) based on the average and 
median numbers of proteins in nine different levels of GO structure, 
which included Rare Classes (average < 500 & median <150), Medium 
Classes (500 < average < 1000 & 150< median <300), and Major Classes 
(average > 1000 & median >300). In other words, based on such clas
sification, it is feasible now to evaluate the performance of any protein 
function annotation tool/method. 

To realize the model assessment, the CAFA data [64] were further 

collected. CAFA was designed to enable the large-scale assessment of 
bioinformatic methods dedicated to predicting the protein function in a 
time challenge manner. Here, the criteria applied for data processing 
and evaluation were based on CAFA3 [65]. Some popular metrics 
(Fmax, AUC and AUPRC) were then used to assess the constructed 
model. Fmax considered the precision and recall of the constructed 
models and was commonly used in protein function annotation [66]. A 
large AUC value represented the overall capacity of correctly predicting 
positive & negative samples [67]. AUPRC was a standard metric to 
evaluate classification performance by punishing false positives more 
than AUC, which resulting in being more frequently applied when high 
costs are required for obtaining labels [68]. The values of all the metrics 
(Fmax, AUC and AUPRC) ranged from 0 to 1. The larger the values were, 
the better the constructed model performed, and a value of 1 indicated 
the best performance as measured by any of these metrics. 

2.2. Encoding of protein sequences using the one-hot strategy 

As one of the most popular encoding methods to represent protein 
sequence, the one-hot strategy [69–77] was applied in this study to 
represent each protein. The dictionary of amino acids in this strategy 
equaled to 21 (20 for the common amino acids, and 1 additional for the 
remaining amino acids). Particularly, during the encoding, the corre
sponding position of a specific amino acid will be represented using 
number ‘1’, and the remaining 20 positions will be set to number ‘0’. 
Thus, each amino acid in a sequence was represented by a 21-dimen
sional vector. Moreover, all protein sequences were encoded by their 
first 2000 amino acids, since over 99.5% of protein sequences from the 
well-established Swiss-Prot database [15] were with their sequence 
length less than 2000. The ZERO codes were added to proteins with 
insufficient length (<2000). As a result, all protein sequences could be 
finally represented by the matrix of 2000*21 dimensions. 

2.3. Recurrent neural network (RNN) integrated in this work 

In this study, a RNN method titled gated recurrent unit (GRU) was 
integrated, for the first time, with multi-kernel CNN method to facilitate 
the protein functional annotation, and the framework of this newly 
proposed deep learning strategy was explicitly illustrated in Fig. 3. 

Fig. 2. Average (green) and median (brown) 
numbers of proteins in those GO families of nine 
different levels (Level 2 to Level 10). There was a 
clear descending trend of average and median 
numbers from the top level (Level 2) to the bottom 
one (Level 10). Since the numbers of proteins in 
particular families indicated the representativeness of 
the corresponding families in the model construction, 
it was reasonable to say that the representativeness of 
a family gradually decreased with the penetration 
into a deeper level. Therefore, the representativeness 
of each GO family was classified into three groups 
using both average and median numbers of proteins 
in nine levels of GO hierarchical structure. Rare 
Classes (average < 500 & median <150), Medium 
Classes (500 < average < 1000 & 150< median 
<300), and Major Classes (average > 1000 & median 
>300).   
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For the CNN method used in both pre-train and fine-tune processes of 
Fig. 3, L indicated the length of the calculated protein sequence (L 
equaled to 2000 in this study), and mk referred to the size of each kernel. 
There were 8 kernels (k = 1,2,…,8), which led to 8 kernel sizes of 8× k. 
Then, the length of output matrix after convolution can be indicated as 
L − mk + 1 (Fig. 3). In the convolution process of CNN, the value of the 
ith neuron (hk,i) in those output matrix of the kth kernel could therefore be 
shown by the following equation (Equation (1)): 

hk,i = ReLU

(

bk +
∑mk

l=1

∑C

j=1
xi+l− 1,jwk,l,j

)

(1) 

The nonlinear activation function applied in this study is ReLU 
(rectified linear unit). The bias parameter is indicated by bk for the cor
responding kernel k. The j indicated the jth location of the amino acid 
dictionary and the C referred to the dictionary dimension (C equaled to 
21 in this work). The l indicated the lth location of the vertical dimension 
of the sliding window for different kernel, and the mk gave the size of the 
kernel k. The weight parameter for kernel k in the [j, l] location of a 

studied sliding window was shown by wk,l,j. The value of the one-hot 
encoding matrix in the [j, l] location of the studied sliding window was 
indicated using xi+l− 1,j. After convolution, an additional max-pooling 
layer was applied, which took the maximum value (hmax

k ) among L −

mk + 1 neurons for kernel k using the following Equation (2). 

hmax
k = max

(
hk,i
)
(i = 1, 2,⋯,L − mk + 1) (2) 

The output vectors [hmax
1 , hmax

2 ,……, hmax
k ] after max-pooling gener

ated by different kernels (k = 1, 2, …, 8) were then concatenated 
(Equation (3)) and processed using a batch regularization. Moreover, a 
random dropout strategy was added to prevent over-fitting of the model. 

s = concat
( [

hmax
1 , hmax

2 ,……, hmax
k

])
(3) 

Finally, the vector s was input into the fully connected layer for 
dimensionality reduction. The output (ai) of ith neuron in the fully 
connected layer could be represented by Equation (4). 

Fig. 3. Deep learning strategy proposed in this study for model construction. A RNN method was integrated with multi-kernel CNN method to facilitate the protein 
functional annotation. As shown, all (67,888) sequences were first represented by the one-hot strategy. Second, all encoded proteins were used as input to construct 
model based on multi-kernel CNN technique, which was fine-tuned by the pre-train process as illustrated at the bottom. Third, the output layer (dense) of the CNN 
model was further input to a RNN method, which led to a fully connected layer. Finally, to facilitate the comprehensive annotations of all (5,825) GO families, the 
dimension of the fully connected layer was reduced through setting the number of neural units to 5825. An output layer was finally developed to enable the 
annotation for all 5825 GO families. 
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ai = Sigmoid

(

bi +
∑n

j=1
s∗wij

)

(4) 

The nonlinear activation function applied here is Sigmoid [78]. The 
bias parameter is indicated by bi for the corresponding neuron i (i is from 
1 to 5,825, denoting all 5825 families in GO database). The j indicated 
the jth location of the dense layer (Fig. 3), and the n provided the entire 
length of the dense layer. The weight parameter between the location j 
of dense layer and the location i of fully connected layer was described 
using wij. 

2.4. Convolutional neural network (CNN) applied in this work 

The recurrent neural network (RNN) has been successfully applied to 
process sequence data and had a wide range of applications in various 
fields including the processing of medical image [79]. natural language 
[80], and so on [81–85]. Its implementation process is similar to a 
Markov chain, and it predicts current state based on previous state [86]. 
Particularly, the neurons in current state is used as the reference input of 
the neurons in the next state, thus it can be applied to the problem of 
serial correlation [86]. RNN is well known for its capacity of encoding 
contextual information in the sequential data, and it only requires the 
limited number of network parameters. Particularly, the RNN method 
applied in this study was the gated recurrent unit (GRU), which added a 
gating mechanism (with two gates of “reset” and “update”) to make de
cision on how much information of the current step will be transferred to 
the next one [87]. 

3. Results and discussion 

3.1. Deep learning strategy proposed for model construction 

As reported, both convolutional (CNN) and deep (DNN) neural net
works were applied to predict protein function, such as DeepGO [53], 
DeepGOCNN [54] and DeepGOPlus [54]. The recurrent neural network 
(RNN) was reported as very powerful in dealing with the time-series 
problem of sequential process, and it was therefore expected to 
elevate the annotation performances for ‘rare classes’ [88]. In this study, 
a RNN method titled gated recurrent unit (GRU) was integrated, for the 
first time, with multi-kernel CNN method to facilitate the protein 
functional annotation, and the framework of this newly proposed deep 
learning strategy was explicitly illustrated in Fig. 3. As shown, all (67, 
888) protein sequences were first represented based on the one-hot 
strategy. Second, all encoded proteins were used as input to construct 
a model based on multi-kernel CNN technique, which was fine-tuned 
using the pre-train process as illustrated at the bottom of Fig. 3. Third, 
the output layer (dense) of the CNN model was further input to the gated 
recurrent unit (GRU), which led to a fully connected layer. Finally, to 
facilitate the comprehensive annotations of all (5,825) GO families, the 
dimension of the fully connected layer was reduced by setting the 
number of neural units to 5825. The output layer was finally developed 
to enable annotation for all 5825 GO families. The detailed information 
of this framework was elaborated below.  

(a) Application of the Convolutional Neural Network 

For the pre-train process (as shown in Figs. 3) and 2 convolutional 
layers and 8 kernels of different sizes were used for feature extraction. In 
the one-dimensional convolution processing of the input matrix, a total 
of 256 filters were set for each convolution kernel. Then, after the one- 
dimensional maximum pooling layer, each kernel will result in a vector 
of 256 dimensions. By concatenating the vectors resulted from eight 
kernels, a dense layer (illustrated at the bottom of Fig. 3) with a length of 
2048 were generated. Based on the resulting dense layer, a new output 
layer of 5825 dimensions were finally produced by setting the number of 

output neural unit to 5825.  

(b) Integration of the Recurrent Neural Network 

For the specific research direction discussed in this work, a protein’s 
function is described by the hierarchical multi-label structure of Gene 
Ontology [60]. Starting from the ontologies of the root nodes, thousands 
of leaf nodes were hierarchically arranged into a directed acyclic graph 
(DAG). In this DAG, the annotations of the child nodes can be referred 
back to their parent nodes, which is very similar to the state transition 
process of RNN method. In other words, since the RNN was reported to 
be powerful in dealing with the time-series problem of sequential pro
cess [88], it was highly anticipated to elevate the annotation perfor
mance for the proteins within the ‘rare classes’. Therefore, the RNN 
method (particularly, the GRU) was integrated, for the first time, with 
multi-kernel CNN method to facilitate the protein functional annotation 
in this study. 

(c)Model Construction Based on Transfer Learning 

To further elevate the performance of protein functional annotation, 
the state-of-the-art technique of transfer learning (TL) was further 
introduced to this study for model construction. Particularly, the 
adoption of TL was expected to prevent the disappearance of gradients 
and the overfitting of the model on the multi-label problem of protein 
functional annotation. In this study, based on all 67,888 protein se
quences with explicit GO terms collected in this study, the half of the 
sequences (32,000) were first selected to construct a CNN-based pre- 
train model based on a similar random selection strategy of the previous 
study [89]. Second, the optimized parameters (such as bias and weight) of 
the pre-train process were fed into the CNN in fine-tune process (orange 
box in Fig. 3) as the starting point for further tuning the parameter. 
Third, all the collected protein sequences were used to construct CNN 
model based on those optimized parameters, which helped to extract the 
common characteristics of the studied proteins [90]. Finally, these 
characteristics (the dense layer in the upper section of Fig. 3) were used 
to construct a RNN model, which were followed by a fully connected 
layer and a final output layer. As a result, the resulting model could 
annotate the protein function of 5825 families, which, to the best of our 
knowledge, was one of the models covering the largest number of GO 
families. 

(d)Environment Setup for Realizing the Proposed Strategy 

To realize the novel strategy proposed above, the computational 
environment was systematically configured. Particularly, the program 
of this strategy was written using Python language, and the Keras 
framework implemented in Tensorflow 2.1 was used. Batch normaliza
tion technology [91] was added after the convolutional layer to prevent 
over-fitting and accelerate the convergence of the model. Dropout 
technique [92] was added to the fully connected layer for randomly 
removing certain number of neurons at each training step to prevent the 
overfitting of neural networks. The Adam optimizer [93] was adopted 
for the optimization during back-propagation, and the learning rate was 
set to 0.0005. The batch size was set to 64, and the early stopping 
technology was used to avoid the overfitting problem. The loss function 
used here was the binary cross-entropy (BCE) [94], which was used to 
calculate the difference between the true value and the predicted one. 

3.2. Comparing the overall performance with existing tools 

In this study, a novel protein functional annotation strategy that 
integrated multiple deep learning methods (PFmulDL) was constructed 
by 1) integrating RNN with multi-kernel CNN method, 2) introducing 
transfer learning, and 3) enabling functional prediction for the largest 
number of GO families. To assess the prediction performance of this 
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newly developed PFmulDL, the prediction performance of several 
existing tools popular in protein functional annotations was assessed 
and compared with that of PFmulDL based on the CAFA3 benchmark 
dataset (described in the “Data Collection for Model Construction and 
Assessment” of the Materials and Methods). As shown in Table 1, two 
typical sequence similarity-based (SS-based, BLAST [64] and GoFDR 
[34]) and another three well-established machine learning-based 

(ML-based, DeepGO [53], DeepGOCNN [54] and DeepGOPlus [54]) 
were considered. Their prediction performance and the performance of 
PFmulDL were compared using the same benchmark dataset CAFA3. 
Particularly, there were three types of CAFA3: molecular function (MF), 
biological process (BP) and cellular component (CC), and the Fmax and 
AUPRC were adopted as the assessing metrics. As provided in Table 1, 
among the five existing tools, the DeepGOPlus gave the highest value of 

Table 1 
Performance comparison among existing tools popular in protein functional annotations and the novel strategy PFmulDL proposed in this study based on the CAFA3 
benchmark dataset. These existing tools included two sequence similarity-based (SS-based, BLAST [64] and GoFDR [34]) and another three machine learning-based 
(ML-based, DeepGO [53], DeepGOCNN [54] & DeepGOPlus [54]) tools. The prediction performances of the studied tools were compared using the benchmark dataset 
CAFA3 of three types: molecular function (MF), biological process (BP), and cellular component (CC), and the Fmax and AUPRC were used as the assessing metrics. All the 
best performing values among existing tools were highlighted by the double underlines, and all the worst performing values among existing tools were highlighted 
using the wavy lines. The best performing values among all studied tools were highlighted using bold font.  

Method BP CC MF 

Fmax AUPRC Fmax AUPRC Fmax AUPRC 

PFmulDL 0.459 0.452 0.677 0.729 0.508 0.509 
SS-based BLAST [64] 0.262 0.071 0.513 0.311 0.435 0.263 

GoFDR [34] 0.193 0.183 0.413 0.357 0.475 0.424 
ML-based DeepGO [53] 0.362 0.213 0.502 0.446 0.392 0.312 

DeepGOCNN [54] 0.388 0.213 0.582 0.523 0.411 0.402 
DeepGOPlus [54] 0.393 0.346 0.640 0.670 0.432 0.396  

Fig. 4. Performance comparison between DeepGOPlus and PFmulDL using benchmark data of CAFA3 and AUC. The degree of PFmulDL’s performance elevations 
from DeepGOPlus were provided, and all levels (Level 2 to 10) of GO’s hierarchical structure were assessed. The x-axis indicated the degree of PFmulDL’s performance 
elevations from DeepGOPlus (with the positive value denoting the performance elevation and the negative value demonstrating the performance reduction). The y- 
axis indicated the number of GO families. The PFmulDL showed the improved performances for the vast majority (~88.7%) of GO families when comparing 
with DeepGOPlus. 
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both Fmax and AUPRC under two CAFA3 data types (BP and CC), and 
the GoFDR resulted in the highest values of both Fmax and AUPRC under 
the data type of MF (all these best performing values were highlighted 
by the double underlines in Table 1). Moreover, the GoFDR and BLAST 
performed the worst in two data types (BP and CC) as assessed using 
Fmax and AUPRC, respectively, and the DeepGO and BLAST performed 
the worst in MF as assessed by Fmax and AUPRC, respectively (all these 
worst performing values were highlighted using the wavy line in 
Table 1). On the one hand, this result indicated that it was difficult to 
find a tool with the consistently best or worst performances. On the 
other hand, the DeepGOPlus demonstrated a better performance in most 
data types when comparing with other existing tools. 

The same benchmark dataset CAFA3 as that used by existing tools 
was also adopted to evaluate the performance of PFmulDL. As shown in 
Table 1, the newly constructed PFmulDL performed the consistently best 
performances for all data types (BP, CC and MF) as assessed by all 
metrics (Fmax and AUPRC). Its performances were highlighted by bold 
fonts in Table 1. Moreover, the percentages of performance enhance
ments comparing to the best-performing existing tools were also pro
vided in the bracket of Table 1. Particularly, PFmulDL was compared 
with DeepGOPlus and GoFDR, and the percentages of performance en
hancements from these two well-performing tools varied from +5.8% to 
30.6%, which indicated a dramatical elevation in the performance of 
protein function prediction by the deep learning strategy proposed in 
this study. 

3.3. Family-based performance comparison with DeepGOPlus 

Based on the above assessment of the overall performance on CAFA3 
benchmark, DeepGOPlus was found to perform the best in most data 
types among all existing tools, which inspired us to conduct in-depth 
evaluation on the performance of each GO family. In other words, all 
those GO families in CAFA3 were predicted by DeepGOPlus & PFmulDL, 
and the degree of performance enhancements between these tools at the 
family level were explicitly analyzed. As demonstrated in Fig. 4, the 

degree of PFmulDL’s performance elevations from DeepGOPlus were 
provided, and all levels (from Level 2 to Level 10) of GO’s hierarchical 
multi-label structure were assessed. The x-axis indicated the degree of 
PFmulDL’s performance elevations from DeepGOPlus (with the positive 
value denoting the performance elevation and the negative value 
demonstrating the performance reduction). The y-axis indicated the 
number of GO families. As described in Figs. 4 and 95.9%, 93.2%, 
89.6%, 89.0%, 87.9%, 85.9%, 88.4%, 76.8%, and 87.5% of GO families 
were found to be predicted with better accuracy (as assessed using AUC 
values) by the PFmulDL than DeepGOPlus in Level 2, Level 3, Level 4, 
Level 5, Level 6, Level 7, Level 8, Level 9, and Level 10, respectively. In 
other words, the PFmulDL demonstrated improved performances for the 
vast majority (88.7%) of GO families when comparing with DeepGOPlus. 

Moreover, the percentages of families with >10% elevation in 
annotation performances (Fig. 4) were 6.1%, 20.0%, 25.0%, 28.0%, 
30.8%, 31.9%, 31.9%, 21.4%, and 43.8% in Level 2, Level 3, Level 4, 
Level 5, Level 6, Level 7, Level 8, Level 9, and Level 10, respectively. It is 
clear that these data illustrate an obvious ascending trend from Level 2 
to 10, which reminds us to evaluate the overall performances of the 
proposed strategy on predicting the functions of proteins in those ‘rare 
classes’ that were defined as from level 6 to level 10 in Fig. 2. 

Therefore, the comparison of the overall performances between 
PFmulDL and DeepGOPlus was also conducted. As shown in Fig. 5, the 
overall performances were represented using the AUC value in pre
dicting CAFA3 data, and the predictive performances of PFmulDL and 
DeepGOPlus were colored in red and green, respectively. For the ‘major 
classes’ (Level 2 and 3 in Fig. 2), the performance of PFmulDL was 
slightly better than that of DeepGOPlus (about 1.2% increase). For ‘me
dium classes’ (Level 4 and 5 in Fig. 2), the performance of PFmulDL was 
also slightly better than that of DeepGOPlus (about 2.2% increase). For 
‘rare classes’ (Level 6 to 10 in Fig. 2), the performance of PFmulDL was 
significantly elevated by ~5.0% from that of DeepGOPlus. Taking the 
Level 10 as examples, it showed the largest performance increase from 
DeepGOPlus to PFmulDL (about 7.0%). In conclusion, based on the result 
of Fig. 5, the PFmulDL proposed in this study was discovered to be 
capable of significantly elevating the annotation performances for the 
proteins in ‘rare classes’ without sacrificing that for the ‘major ones’. 

To test whether the PFmulDL can accurately predict the function of 
specific protein, an exemplar protein (Escherichia coli L-asparaginase 1, 
which has not been included into model construction) was annotated by 
both PFmulDL and DeepGOPlus. As a result, PFmulDL annotated this 
protein to 29 GO terms, 24 (~82.8%) out of which were consistent with 
the annotation label of the Gene Ontology. However, DeepGOPlus pre
dicted that protein to 44 GO terms, only 19 (~43.2%) out of which were 
consistent with the annotation label of the Gene Ontology. Therefore, 
this further demonstrated the good annotation performance of PFmulDL 
proposed in this study. 

4. Conclusions 

In this study, a novel protein functional annotation strategy that 
integrated multiple deep learning methods (PFmulDL) was constructed 
by 1) integrating RNN with multi-kernel CNN method, 2) introducing 
transfer learning, and 3) enabling functional prediction for the largest 
number of GO families. Based on a systematical comparison with some 
existing tools popular in current protein functional annotation, this 
strategy was found as capable of significantly elevating the annotation 
performance for ‘rare classes’ without sacrificing that for the ‘major ones’. 
All in all, due to the emerging requirement on improving the annotation 
performance for proteins in rare classes, the PFmulDL proposed in this 
study would become an essential complement to those available tools in 
the fields of drug target discovery [95,96], drug transportation [97,98], 
drug metabolism [99], OMICS [100–102], protein-relevant interactions 
[103–106], and so on [107–109]. The model and source codes are freely 
available and open to all users at: https://github.com/idrbla 
b/PFmulDL. 

Fig. 5. Comparing the overall performances between PFmulDL and Deep
GOPlus. The overall performances were represented using AUC values in pre
dicting CAFA3 data, and the prediction performances of PFmulDL and 
DeepGOPlus were colored in red and green, respectively. In the ‘major classes’ 
(Level 2 and 3 as defined in Fig. 2), the performance of PFmulDL was slightly 
better than that of DeepGOPlus (~1.2% increase). For ‘medium classes’ (Level 4 
and 5 in Fig. 2), the performance of PFmulDL was moderately better than that 
of DeepGOPlus (~+2.2%). For ‘rare classes’ (Level 6 to 10 shown in Fig. 2), the 
performance of PFmulDL was significantly elevated by ~5.0% from that of 
DeepGOPlus. The PFmulDL was discovered able to significantly elevate the 
annotation performances for the proteins in ‘rare classes’ without sacrificing 
that for the ‘major ones’. 
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