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The quality and efficiency of deep learning critically depends 
on the representation of the learned objects. In particular, 
enhanced pharmaceutical learning depends on appropriate 

molecular representations (MolRs)1,2. By learning their own opti-
mized representations directly from the underlying graphs of the 
molecules, graph-based de novo learning of MolRs has enabled nota-
bly improved deep learning of pharmaceutical and physicochemi-
cal properties, outperforming those based on conventionally used 
molecular descriptors (MolDs) and fingerprint features (FFs)3–5.  
The graph-based approaches may in some cases be subject to lim-
ited information processing across the graphs6. Therefore, broader 
exploration of MolRs complements graph-based and other methods 
for more enhanced deep learning of pharmaceutical properties.

Many MolDs and FFs have been derived from human expert 
knowledge for comprehensive presentation of the constitutional, 
physicochemical, topological, structural and substructural features 
of molecules7,8, which are valuable priors for feature generation and 
deep learning of pharmaceutical properties. But questions remain 
regarding how these priors can be featurized into more appro-
priate representations. In general, good representations are task 
non-specific priors that capture posterior distribution of the mul-
tiple underlying explanatory elements, enable disentangling and 
clustering of these elements, and support smooth and flexible local 
generalization of task functions9. For instance, the destruction–
construction learning method is capable of recognizing highly dif-
ficult fine-grained images10. In destruction–construction learning, 
input images are partitioned into local regions, which are shuffled 
for exposing discriminative local features and then reconstructed 

for revealing semantic cross-region correlation relationships, lead-
ing to state-of-the-art (SOTA) performance on three benchmark 
datasets10.

Therefore, appropriate feature generation may be established by 
broad profiling of the intrinsic correlations of diverse sets of MolDs 
and FFs with respect to a large number of molecules in the known 
chemical space. Moreover, converting one-dimensional unordered 
vectors to two-dimensional (2D) clustered feature maps (Fmaps) 
enable efficient learning (parameters saving) using shared-weights 
architectures of convolution neural networks (CNNs)11,12. The 
development of such feature-generation methods may be facilitated 
by the extensive studies of MolRs, open-source tools7,8,13, correlation 
metrics14–16, quantification of chemical diversity and characteris-
tics17,18, and dimensionality reduction methods19,20.

In this Article, we have developed a new molecular feature- 
generation method MolMap for mapping MolDs and FFs into 
robust 2D Fmaps that capture the intrinsic correlations of molecular 
features. MolMap was trained by broadly profiling 1,456 MolDs and 
16,204 FFs of 8,506,205 molecules. MolMap representations were 
evaluated for out-of-the-box (OOTB) deep learning of 13 pharma-
ceutical and 3 physicochemical properties on 26 public benchmark 
datasets. A CNN architecture MolMapNet was constructed as an 
OOTB development tool for automated deep learning applications, 
wherein the same set of default parameters were set up for all learn-
ing tasks. OOTB tools aim at taking human out of the learning pro-
cesses, allowing more people to use them21. The performances of 
the MolMapNet models were evaluated with respect to those of the 
SOTA deep learning models on the same benchmark datasets and 
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data splits. MolMap and MolMapNet open-source libraries are at 
https://github.com/shenwanxiang/bidd-molmap.

Background
Deep learning of pharmaceutical properties has been conducted 
based on four MolR classes (Supplementary Fig. 1 and Supplementary 
Table 1). The first is graph-based feature representations, where 
graph convolutional networks (GCNs) or graph attention net-
works (GATs) have been explored for de novo learning directly 
from the underlying graphs of molecules4–6, leading to the SOTA 
performances on pharmaceutically related tasks22. The second is 
string-based representations, where CNN and recurrent neural net-
works have been employed for learning from the embeddings of the 
string representations of chemical structures (for example, canoni-
cal simplified molecular-input line-entry system (SMILES))23–25. 
The third is the image representations, where CNNs have been used 
for learning from the rule-based renderings of a 2D chemical digital 
grid or Kekulé images26,27. The fourth is knowledge-based represen-
tations, where deep learning models have been developed for learn-
ing from the priori human-knowledge-derived MolDs or FFs28.

Although it is preferable to explore the lower-level representa-
tions without relying on human intuitions, the extensive knowledge 
bases of MolDs and FFs are highly useful for learning MolRs and 
pharmaceutical properties from human-knowledge perspectives. In 
particular, subsets of MolDs and FFs show a high degree of cor-
relation, which provides unique clues for appropriate MolRs. Some 
MolDs or FFs are related by design (for example, MolWeight and 
MolExactWeight), while some ‘unrelated’ ones show high degrees 

of intrinsic correlation. Investigations of chemical screening col-
lections have revealed that polar surface area correlates with the 
counts of hydrogen bond acceptors and donors17. The clustering of 
these correlated MolDs or FFs and their projection into 2D Fmaps 
enable feature pattern agglomeration for efficient learning by the 
shared-weights CNN architectures29.

For coordinated learning of MolDs and FFs, it is desirable to use 
a universal correlation metric for both MolDs and FFs. Cosine cor-
relation has consistently performed comparably well as the widely 
used Tanimoto coefficient in certain FF-based molecular studies15,30 
and the widely used Euclidean distance in some MolD-based clas-
sification tasks16. Therefore, cosine correlation may be used for 
MolD/FF-based feature generation. To learn from MolDs and FFs 
with CNNs, high-dimensional MolDs and FFs need to be projected 
into 2D Fmaps, which requires a manifold learning algorithm with 
minimal loss of information. The recently developed uniform 
manifold approximation and projection (UMAP) tool20, based on 
the Riemannian geometry and algebraic topology algorithms, has 
demonstrated competitive capability for this task19.

results and discussion
MolMap Fmaps. Using the MolMap package (Fig. 1), we gen-
erated the MolD and FF Fmaps of aspirin and its analogue 
N-acetylanthranilic acid (Fig. 2). Although these molecules are 
highly similar in structure, their MolD Fmaps contain small areas 
of markedly different patterns and their FF Fmaps contain regions 
of substantially different patterns. These patterns (for example, the 
purple and light-blue dashed boxes of Fig. 2) are capturable by a 

Table 1 | Summary of benchmark datasets in this study

Data class Dataset and split reference Number of molecules Number of 
tasks

Task metric Task type

Physicochemical ESOL (estimating the aqueous solubility), water 
solubility3,4

1,128 1 RMSE Regression

FreeSolv, solvation free energy3,4 642 1 RMSE Regression

Lipop, lipophilicity3,4 4,200 1 RMSE Regression

Molecular binding PDBbind-F, PDBbind-C and PDBbind-R, ligand–protein 
binding full, core and refined (three datasets)3,4

9,880, 168, 3,040 1 for each RMSE Regression

Bioactivity PCBA, PubChem HTS Bioassay3 437,929 128 PRC-AUC Classification

MUV (maximum unbiased validation) PubChem 
Bioassay3

93,087 17 PRC-AUC Classification

ChEMBL bioassay activity dataset3,69 456,331 1,310 ROC-AUC Classification

Cancer cell-line IC50 A2780, CCRF-CEM12, DU-14512, 
HCT-1512, KB12, LoVo12, PC-312 and SK-OV-312 (eight 
datasets)27

2,255, 3,047, 2,512, 994, 
2,731, 1,120 4,294, 1,589

1 for each R2 Regression

Malaria, anti-malarial EC504 9,998 1 RMSE Regression

BACE (beta-secretase 1) inhibitors3,4 1,513 1 ROC-AUC Classification

HIV (human immunodeficiency virus) replication 
inhibition3,4

41,127 1 ROC-AUC Classification

Toxicity Tox21, toxicology in the twenty-first century3,4 7,831 12 ROC-AUC Classification

SIDER (side effect resource), adverse drug reactions of 
marketed drugs3,4

1,427 27 ROC-AUC Classification

ClinTox, clinical trial toxicity3,4 1478 2 ROC-AUC Classification

Pharmacokinetic CYP (cytochrome P450) PubChem Bioassay CYP 1A2, 
2C9, 2C19, 2D6, 3A4 inhibition32

16,896 5 ROC-AUC Classification

LMC-H, LMC-R and LMC-M, liver microsomal 
clearance in human, rat and mouse28

8,755 3 R2 Regression

BBBP, blood–brain barrier penetration3,4 2,039 1 ROC-AUC Classification

Each dataset was split into training, validation and test sets by using the corresponding data-split code of published studies (reference provided).
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typical CNN filter. In the MolD Fmaps, different MolD classes are 
primarily concentrated in distinctive areas. In the FF Fmaps, the 
PharmacoErGFP FFs are largely separated from the other FFs, and 
the MACCSFP and PubChemFP FFs are complementarily located 
in the same regions. Moreover, the correlated MolDs or FFs form 
clusters. For instance, three quantitative estimate of druglikeness 
(QED)18 MolDs (MolQedWeightsMax, MolQedWeightsMean and 
MolQedWeightsNone) are clustered together (Fig. 2) and various 
other correlated MolDs are also clustered together (Supplementary 
Fig. 2). These indicate that MolMap Fmaps present distinguished 
representations and intrinsic correlations of molecular and struc-
tural features.

MolMapNet deep learning performances with respect to the 
SOTA graph-based GCN/GAT models. The GCNs/GATs have 
achieved SOTA performances on a number of benchmark data-
sets3–5. Among these GCN-/GAT-tested datasets, there are 13 
pharmaceutical (3 molecular binding, 6 bioactivity, 3 toxicity, 1 
pharmacokinetic) and 3 physicochemical datasets with available 
data-split codes. Therefore, MolMapNet OOTB models (Fig. 3) 
were developed on these 16 datasets and compared with the pub-
lished performances of the GCN/GAT models (Table 2) using the 
same data split, evaluation metric and (for multitask datasets) mul-
titask training method3–5 (Supplementary Method 1). MolMapNet 
outperformed the MoleculeNet models3 and directed message pass-
ing neural networks (D-MPNN) models5 on 9 of the 12 pharma-
ceutical datasets but underperformed these GCN models on all 3 
physicochemical datasets (Table 2). MolMapNet also outperformed 
the AttentiveFP models4 on 7 of the 8 pharmaceutical datasets 
but underperformed these GAT models on all 3 physicochemical  
datasets. These results suggested that MolMap Fmaps are highly 

appropriate MolRs, and MolMapNet is useful for learning phar-
maceutical properties competitively with respect to the SOTA. 
MolMapNet underperformed the GCN/GAT models on the physi-
cochemical datasets partly for the following reason: MolMapNet 
learns from MolDs, some of which are computed physicochemical 
properties (for example, the calculated logP, clogP). MolMapNet 
learning of physicochemical properties is subject to the intrinsic 
errors in the computed MolDs of physicochemical property values 
(for example, clogP values of drugs slightly differ from experimen-
tal values by a correlation coefficient 0.955 (ref. 31)). GCN/GAT 
de novo learning algorithms avoid these intrinsic errors and thus 
are more advantageous for learning physicochemical properties.

The performance of the MolMapNet OOTB models was further 
evaluated over 10 different random seeds of data splits with respect 
to those of the D-MPNN models5 and AttentiveFP models4 on 12 
benchmark datasets (Extended Data Figs. 1 and 2). Except the phys-
icochemical property prediction tasks, MolMapNet consistently 
showed better performance with respect to different seeds, and the 
performance was at comparable or smaller variations than those 
of the D-MPNN and AttentiveFP models. For the three physico-
chemical property prediction tasks, MolMapNet was mostly outper-
formed by the D-MPNN and AttentiveFP models but nonetheless 
exhibited similar patterns of variations as one or both D-MPNN 
and AttentiveFP models.

MolMapNet deep learning performances with respect to the 
chemical graph-based CNN models. The chemical graph-based 
CNN models have performed well in deep learning of pharmaceu-
tical and physicochemical properties without the chemical knowl-
edge26,27. Some of these CNN models are as deep as 19 layers27 for 
end-to-end learning, while MolMapNet is a CNN of fewer layers. 
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Fig. 1 | MolMap feature-generation flowchart. a, Derivation of the pre-trained distance matrix of molecular descriptors and fingerprints by broad profiling 
of PubChem molecules. b, Extraction of MolMap distance matrix of user-selected molecular descriptors and/or fingerprints from the pre-trained distance 
matrix, followed by UMAP projection of these descriptors and fingerprints into the respective 2D embedding and the subsequent mapping into the 
MolMap 2D Fmap by using the J–V algorithm. c, Generation of the MolMap Fmaps of 13 classes of descriptors and 3 sets of fingerprints for aspirin, upon 
inputting its SMILES string in b (bottom right).
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Differential performances of MolMapNet with respect to these CNN 
models partly reflect the differential capacity of MolMap Fmaps 
for learning pharmaceutical properties. Notably, the image-based 
19-layer CNN KekuleScope models have recorded outstanding 
performances on 8 cancer cell-line benchmark datasets27, the per-
formance of these models may be compared to MolMapNet mod-
els because the datasets and data-split codes of these models are 
available. Hence, MolMapNet OOTB models were developed on 
these 8 benchmark datasets and compared with the published per-
formances of the KekuleScope models27 (Table 3) using the same 
data split and evaluation metric27 (Supplementary Method 1). 
MolMapNet outperformed the KekuleScope models on all 8 datas-
ets (squared Pearson correlation coefficient between predicted and 
observed values R2 = 0.583–0.734 versus R2 = 0.427–0.622).

MolMapNet multitask deep learning performances with respect 
to the molecular-descriptor-based multitask fully connected 
deep neural network models. Investigations have suggested that 
multitask fully connected deep neural networks (FC-DNNs) can 
perform better than single-task FC-DNNs in predicting pharma-
ceutical properties28,32,33. In particular, autoencoder (AE)-based32 
and Sanofi-Aventis28 FC-DNN models have scored outstand-
ing performances on two multitask benchmark datasets: the CYP 
isoenzyme inhibitor dataset and the liver microsomal clearance 
dataset. MolMapNet may be competitive in multitask learning 
by more appropriate MolRs. Thus, multitask MolMapNet OOTB 
models were developed on these two multitask datasets and com-
pared with the published performances of the AE-based32 and 

Sanofi-Aventis28 models by using the same data split, evaluation 
metric and multitask training method, respectively (Table 3). On 
the CYP450 datasets, MolMapNet underperformed the AE-based 
FC-DNN models32 on three of the five tasks, but the area under the 
receiver operating characteristic curve (ROC-AUC) values of the 
three underperformed tasks are nonetheless comparable to those 
of the AE-based FC-DNN models. On the liver microsomal clear-
ance tasks, MolMapNet outperformed the Sanofi-Aventis28 models 
on all three tasks. Overall, the MolMap Fmaps and the multitask 
MolMapNet architectures are competitive for multitask learning of 
pharmaceutical properties.

Single-path versus dual-path MolMapNet deep learning models.  
Extended Data Fig. 3 shows the comparative performances of 
the single-path and dual-path MolMapNet OOTB models on 11 
benchmark datasets of the MoleculeNet data splits and AttentiveFP 
data splits. For the regression tasks, the MolD-only single-path 
(MolMapNet-D) models performed as comparably well as or bet-
ter than the joint MolD and FF dual-path (MolMapNet-B) models 
on three of the five regression datasets. For classification tasks, the 
FF-only single-path (MolMapNet-F) models performed as compa-
rably well as the MolMapNet-B models on four of the six classifi-
cation datasets. Interestingly, the MolMapNet-F models performed 
slightly worse in regression tasks but slightly better in classification 
tasks than the MolMapNet-D models. Interestingly, the input Fmaps 
of MolMapNet-D models are quantitative MolDs (for example, 
molecular weight), while the input Fmaps of MolMapNet-F models 
are categorical FFs (0 or 1) (Fig. 2). Consequently, MolMapNet-D 
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models tend to perform better for continuous predictors such as 
regression tasks, while MolMapNet-F models are better for categor-
ical predictors such as classification tasks. Overall, MolMapNet-B 

models take advantage of both input types (MolD and FF Fmaps), 
thereby becoming highly completive in both regression and clas-
sification tasks.
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MolMapNet deep learning performances with respect to the 
k-nearest-neighbour models. The performances of the MolMapNet 
OOTB models are partly attributable to the pre-training of the 
MolMap Fmaps. To probe the influence of this pre-training on clas-
sification performances, we evaluated the models with and without 
the pre-training of the FF Fmaps. Specifically, the performance of 
the MolMapNet-F OOTB models was compared with the k-nearest 
neighbour (kNN) models (Supplementary Method 2), which were 
built from the same three FF sets as the MolMapNet-F models on 
five classification benchmark datasets (BACE, BBBP, HIV, ClinTox 
and SIDER) and the MoleculeNet data splits (Extended Data  
Fig. 4). MolMapNet-F OOTB models outperformed the kNN 
models for four of the five datasets by noticeable margins, that is, 
the ROC-AUC values are 0.843 versus 0.851, 0.744 versus 0.677, 
0.774 versus 0.728, 0.869 versus 0.806, and 0.684 versus 0.630 for 
the BACE, BBBP, HIV, ClinTox and SIDER datasets, respectively. 
In contrast, the ROC-AUC values of the best of the MoleculeNet3 
and Chemprop5 models are 0.806, 0.738, 0.776, 0.864 and 0.676 for 
the BBBP, ClinTox, HIV and SIDER datasets, respectively (Table 
2). Therefore, MolMap pre-training is advantageous in enhanced 
learning of pharmaceutical properties. Noticeably, all kNN mod-
els performed well, with the BACE model outperforming the GCN  
and MolMapNet OOTB models. These performances are partly 

attributable to the appropriate MolRs by the three MolMap-selected 
FF sets. These FF sets were selected because their MolMap Fmaps 
present distinguished and more densely clustered patterns than the 
other FF sets, thereby facilitating enhanced learning (Methods).

Optimized versus OOTB MolMapNet deep learning models. We 
optimized four hyperparameters of the MolMapNet-B models by 
coarse-grained grid search: the UMAP feature-generation parame-
ters for enhanced feature representation, the batch size for improved 
convergence and performance, the kernel size of the first convolu-
tion layer for more effective receptive field, and the dense layer width 
for improved multitask classification. First, each hyperparameter 
was individually optimized. The UMAP optimization on the ESOL, 
BACE and Tox21 datasets showed that a reduced number of neigh-
bours usually boosts performance by increased precision of the local 
feature distribution19 (Extended Data Fig. 5). The batch size optimi-
zation on the ESOL and FreeSolv datasets revealed that decreased 
batch sizes accelerates convergence and improves performance 
(Supplementary Fig. 3). The kernel size optimization on the BACE 
dataset suggested that increased kernel size enhances learning via a 
more effective receptive field34 (Supplementary Fig. 4). The dense 
layer width optimization indicates that increased number of nodes 
improves the multitask performances by expanded information  

Table 2 | MolMapNet performances on 15 benchmark datasets compared with the graph-based models

Data class Dataset Task metric MoleculeNet3 Chemprop5 attentiveFP4 MMNB (OOTB)

(gCN best) (D-MPNN)

Physicochemical ESOL RMSE 0.580 (MPNN) 0.555 0.575

0.486 0.543

FreeSolv RMSE 1.150 (MPNN) 1.075 1.155

0.773 0.994

Lipop RMSE 0.655 (GC) 0.555 0.625

0.564 0.640

Molecular binding PDBbind-F RMSE 1.440 (GC) 1.391 0.721

0.766 0.753

PDBbind-C RMSE 1.920 (GC) 2.173 0.931

PDBbind-R RMSE 1.650 (GC) 1.486 0.889

Bioactivity Malaria RMSE 1.077 1.011

BACE ROC-AUC 0.806 (Weave) N/A 0.849

0.856 0.881

HIV ROC-AUC 0.763 (GC) 0.776 0.777

0.848 0.865

MUV PRC-AUC 0.109 (Weave) 0.041 0.096

PCBA PRC-AUC 0.136 (GC) 0.335 0.276

ChEMBL ROC-AUC 0.739 0.750

Toxicity Tox21 ROC-AUC 0.829 (GC) 0.851 0.845

0.845 0.842

SIDER ROC-AUC 0.638 (GC) 0.676 0.680

0.640 0.700

ClinTox ROC-AUC 0.832 (GC) 0.864 0.888

0.945 0.973

Pharmacokinetic BBBP ROC-AUC 0.690 (Weave) 0.738 0.739

0.931 0.961

The MolMapNet, Chemprop and the AttentiveFP models use the same dataset, data split and (for multitask datasets) multitask training method as the MoleculeNet models or the AttentiveFP models, 
respectively. The bold indicates the cases of the models outperforming all other models. MPNN, message passing neural networks; GC, graph convolutional models; Weave, Weave models. MMNB-OOTB: 
out-of-the-box performance of MolMapNet. N/A, not avaliable.
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processing capacity beyond the OOTB settings tailored mostly to 
single task. Second, the four hyperparameters were collectively 
optimized on eight datasets (ESOL, FreeSolv, Malaria, BACE, HIV, 
MUV, PCBA, ChEMBL) using the MoleculeNet and AttentiveFP 
data splits (Supplementary Table 5). Before optimization, only 5 of 
the 12 MolMapNet-B models outperformed the SOTA GCN/GAT 
models. After optimization, nine models outperformed the SOTA 
GCN/GAT models under the same data splits. In particular, the 
RMSE of the FreeSolv model is reduced by 14.7% (from 1.075 to 
0.916) and the area under the precision recall curve (PRC-AUC) 
value of the MUV model is increased by 44.9% (from 0.109 to 
0.158). For the three underperforming MolMapNet-B models, 
their MolMapNet-D counterparts are substantially better, with two 
models outperforming the SOTA AttentiveFP GAT models (RMSE 
0.477 versus 0.486 on the ESOL dataset and 0.728 versus 0.773 on 
the FreeSolv dataset) in the same data splits (Extended Data Fig. 3).

MolMapNet generalization capability on novel compounds. 
MolMapNet was evaluated on 216 and 179 novel BACE 
high-potency inhibitors and low-potency inhibitors (NBACE 
dataset, Supplementary Table 6) extracted from the ChEMBL 
database35 (Supplementary Method 3). The molecular similarity 
patterns between the NBACE and BACE datasets were visualized by 
TMAP36, the Tanimoto coefficients of the compounds between the 
NBACE and BACE datasets are 0.23–0.61 (Extended Data Fig. 6).  
Tanimoto coefficients <0.7 typically indicate remote similarity37. 
Thus, the NBACE dataset is novel with respect to the BACE dataset. 
The performance of the MolMapNet-F model trained by the BACE 
dataset was tested by the NBACE dataset in comparison with the 
D-MPNN5 and AttentiveFP4 models. The sensitivity and specificity 
of the MolMapNet-F model are 70% and 84%, compared with 48% 
and 81% for the GCN D-MPNN5 model and 63% and 63% for the 
AttentiveFP4 model, respectively.

MolMapNet learned deep latent features and important input 
features. To probe the MolMapNet learned deep latent features 
and important input features, we first analysed the MolMapNet-D 
solubility model trained on the ESOL dataset and the AttentiveFP 
data split. Principal component analysis (PCA) analysis of the 
latent features of the global max-pooling layer (before the fully 
connected layers) indicated that these latent features are clustered 
according to solubility values (Extended Data Fig. 7a). Therefore, 
task-oriented clustering is a characteristic of deep latent features. 
The important input features were derived based on an impor-
tance score computed from the permutation algorithm38 and the 
mean squared error (MSE) metric (Supplementary Method 4). The 
important input features derived from the training and test sets 
are correlated (Pearson r = 0.92, Extended Data Fig. 8a). The top 
important input features E-state, QED, charge and topological index 
(Supplementary Table 7) are clustered together (Extended Data 
Fig. 8b). The E-state index encodes topological environment and 
electronic interactions relevant for solubility prediction39–42. QED 
descriptors quantify drug-likeness and indicate solubility and per-
meability of oral drugs18. The charge descriptor reflects ionic inter-
actions that affect solubility43. We next analysed the important input 
features of the MolMapNet-F BACE inhibitor model trained on the 
BACE dataset. The top-ranked important FFs include a group of 
five PubChemFP FFs (Extended Data Fig. 9a) and a group of seven 
MACCSFP and PubChemFP FFs (Extended Data Fig. 9b), which 
are frequently found in BACE high-potency inhibitors but less so in 
the low-potency inhibitors (Extended Data Fig. 9c).

The top-50 FFs in importance scores were mapped to the individ-
ual atoms and bonds of each molecule (Supplementary Methods), 
which can be visually displayed using different colour schemes to 
reveal the substructures deemed by deep learning models as impor-
tant. When analysing the typical 2-aminoquinoline inhibitors44 
and their structurally close neighbours the 2-aminobenzimidazole 

Table 3 | MolMapNet performance on eight single-task and two multitask benchmark datasets compared with CNN and fully 
connected DNN models

Dataset individual task Task metric Task performance

Single taska KekuleScope27 (Vgg19-bn) MolMapNet (MMNB)

Cancer cell-line bioactivity A2780 R2 0.622 0.663

CCRF-CEM R2 0.528 0.627

DU-145 R2 0.427 0.594

HCT-15 R2 0.617 0.734

KB R2 0.533 0.713

LoVo R2 0.530 0.583

PC-3 R2 0.496 0.615

SK-OV-3 R2 0.461 0.597

Multitask joint training methodb ae-based FC-DNN32 MolMapNet (MMNB)

CYP isoenzyme inhibitors 1A2 ROC_AUC 0.982 0.975

2C9 ROC_AUC 0.799 0.805

2D6 ROC_AUC 0.878 0.908

2C19 ROC_AUC 0.832 0.823

3A4 ROC_AUC 0.929 0.923

Multitask alternate training methodb Sanofi-aventis FC-DNN28 MolMapNet (MMNB)

Liver microsomal clearance LMC-H R2 0.566 0.580

LMC-R R2 0. 771 0.790

LMC-M R2 0.475 0.526
aEight single-task cancer cell-line bioactivity benchmark datasets compared with the CNN-based KekuleScope models using the same dataset and the same data split. bTwo multitask benchmark datasets 
compared with the AE-based and Sanofi-Aventis FC-DNN models using the same dataset, data split and the multitask training method. VGG19-bn, VGG19 with batch normalization; Sanofi-Aventis 
FC-DNN, multitask fully connected deep neural networks developed by a Sanofi-Aventis team. The bold indicates the cases of the model outperforming the comparative model.
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inhibitors45, the visualization revealed the hydrophobic carbon chain 
of the high-potency inhibitor BACE_276 as an important substruc-
ture for BACE activities, which is consistent with the conclusions 
from the structure–activity relationship studies44 (Extended Data 
Fig. 10). The top-50 important features may be exploited for indi-
cating potent BACE inhibitory scaffolds (Supplementary Fig. 5). By 
this approach, 25 of 26 collected clinical trial BACE inhibitor drugs 
were identified as high-potency inhibitors, while the remaining drug 
PF-04976081 lacks an identifiable highly important substructure 
partly because it is of a novel molecular scaffold (Supplementary 
Fig. 6). Therefore, our analysis suggested that the MolRs important 
for the pharmaceutically relevant properties can be well captured by 
MolMapNet for enhanced prediction of these properties.

Conclusions
Accurate learning and prediction of pharmaceutical properties is a 
challenging task46, particularly for low-data cases47 and novel pre-
diction tasks48. Appropriate MolRs are critical for enhanced learn-
ing and prediction capabilities1–3,14,49. Notable progress has been 
made in graph-based de novo learning of MolRs3–6. On top of these 
remarkable advances, broader exploration of MolRs helps to add 
more perspectives for enhanced learning and prediction capabili-
ties. In particular, through broader learning of the extensive priori 
human-knowledge bases, appropriate MolRs may be derived from 
the rich reservoir of the constitutional, structural and physicochem-
ical properties in MolDs and the high variety of substructures in 
FFs, thereby facilitating enhanced deep learning of pharmaceutical 
properties. New tools such as MolMap facilitate feature generation 
of MolDs and FFs into 2D Fmaps that capture the intrinsic correla-
tions of molecular features for deep learning applications. On the 
basis of these Fmaps, the shared-weight CNN architectures can be 
exploited for enhanced learning and prediction of pharmaceutical 
properties. To reduce the technical barrier and support wider appli-
cations, it is desirable to develop deep learning models as OOTB 
tools21. Therefore, CNN-based deep learning MolMapNet models 
were developed for OOTB deep learning of pharmaceutical prop-
erties, which are highly competitive against established models on 
most of the 26 benchmark datasets. Deep learning models explor-
ing wider variety of representation and feature-generation strategies 
(for example, the graph-based DNN fingerprint6) have continuously 
progressed. The collective exploration of these and established strat-
egies enable more enhanced deep learning and prediction of phar-
maceutical and other molecular properties.

Methods
Data and processing for MolMap learning. The SMILES codes of 138 million 
molecule entries were downloaded from PubChem50 (CID-SMILES.gz). These 
entries were deduplicated based on their canonical InchI codes (computed by 
RDkit8), leading to 110,913,349 unique molecules. These unique molecules were 
grouped into 100 classes according to their on-bits counts (NumOnBits) of the 
ECFP4-like Morgan Fingerprint (MorganFP). The stratified sampling technique 
was used to extract 8,506,205 sampling molecules from the 100 classes for sampling 
the 110,913,349 molecules (Supplementary Fig. 7).

Molecular descriptors and fingerprint features. Based on the open-source 
libraries RDkit8, Mordred7, PyBioMed13 and OpenBabel51, the MolMap molecular 
feature module was built for computing 1,456 MolDs and 16,204 FFs. These 
MolDs include 13 classes of constitutional, physicochemical and topological 
descriptors (Autocorr, InfoContent, Topology, Path, Connectivity, Kappa, Estate, 
Charge, Matrix, Fragment, Property, Constitution and MOE (molecular operating 
environment)) (Supplementary Table 2). The FFs include seven sets of topological 
path-based features (MorganFP (ECFP-like), AtomPairFP, TorsionFP, RDkitFP8, 
AvalonFP52, MHFP15 and MAP453), two sets of pharmacophore-based features 
(PharmacoErGFP54 and PharmacoPFP55) and three sets of substructure-key 
SMARTS-based features (PubChemFP, MACCSFP and EstateFP56), and their 
default calculation settings are available in Supplementary Table 3.

Distance matrix for molecular descriptors and fingerprint features. Using 
the cosine correlation function d cosine x;yð Þ ¼ 1� xy

xk k yk k
I

, the pairwise distances 
among 1,456 MolDs and among 16,204 FFs were computed with respect to 

8,506,205 sampling molecules, where x or y is a 8,506,205-dimensional vector, 
with each component being a MolD or FF of a molecule. These broadly learned 
pairwise distances were stored in a distance matrix of 1,456 × 1,456 dimensions 
for the MolDs and 16,204 × 16,204 dimensions for the FFs, respectively. MolMap 
also provides distance matrices based on the Pearson correlation distance 
d corr x;yð Þ ¼ 1� x�xð Þ y�yð Þ

x��xk k y��yk k
I

 and Jaccard distance d jaccard x;yð Þ ¼ 1� x\y

x ∪ y

I
 (for 

FFs only). The variance of some MolDs and FFs is low across the molecules 
(Supplementary Fig. 8a,b). For low-variance data, optimal filtering is achievable 
by removing ~15% of the lowest variance descriptors57. We found that the removal 
of ~10% of the lowest variance MolDs or FFs led to good performance, which 
correspond to a removal variance threshold value of <0.0001 (Supplementary  
Fig. 8c,d).

Construction of the 2D molecular Fmaps. Upon selection of specific MolD 
classes or FF sets, their pairwise distances were extracted from the MolMap 
distance matrices. Based on these pairwise distances, the MolDs or FFs were 
projected onto a 2D feature space as feature points by using UMAP19,20. These 
feature points embed the broadly learned correlation relationships of the selected 
MolD classes or FF sets. They were further assigned to the regular grids of a 
2D-grid map, MolMap 2D Fmap, by using the Jonker–Volgenant (J–V) algorithm 
for linear assignment58. Here, the J–V algorithm was used for minimizing the cost 
squared distance matrix d sqeuclidean x;yð Þ ¼ xembed � ygrid

�� ��2

I
 so that the MolMap 

2D Fmaps maintains the broadly learned correlation relationships of the MolDs or 
FFs. MolMap (flowchart in Fig. 1) was coded in Python 3+ (Supplementary Fig. 9).

MolMap multichannel Fmaps. Deep learning performance of some multiframe 
or multiclass data can be enhanced by using multichannel networks, that is, each 
distinguished data class is learned through a separate channel of a multichannel 
CNN architecture (multichannel in input layer or in multiple layers). In MolMap, 
each of the 13 MolD classes is a unique class of molecular properties, and each 
of the 12 FF sets is of distinguished substructure encoding system. Therefore, in 
some cases, MolMap-based deep learning of pharmaceutically relevant properties 
may also be enhanced by learning each MolD class or FF set in separate channel of 
multichannel networks. To support multichannel deep learning, MolMap outputs 
the molecular Fmaps in both single-channel and multichannel mode, where each 
MolD or FF is located at the same grid point in both modes (Fig. 1a).

MolMapNet deep learning architecture. A dual-path CNN architecture59, 
MolMapNet, was constructed for simultaneous learning from both MolDs and 
FFs. MolMapNet consists of three components, the multichannel input Fmaps, 
dual-path CNN feature learning and the nonlinear task learning (Fig. 3). In 
this work, MolMapNet MolRs were based on 13 MolD classes and 3 FF sets 
(MACCSFP, PharmacoErGFP and PubChemFP). Although each selected FF set 
has been outperformed by the MorganFP (ECFP-like) in various tasks53,60,61, the 
MolMap Fmap of each selected FF set presents distinguished and more densely 
clustered patterns (Supplementary Fig. 10), which enables more enhanced learning 
of pharmaceutical properties than the other individual FF sets as tested on the 
three regression and five classification benchmark datasets (Supplementary Fig. 
11). Moreover, each selected FF set has performed well in representing molecular 
databases62, machine learning tasks63–65 and virtual screening66,67. Collective use of 
these three FF sets probably lead to better performances.

The first convolution layer of MolMapNet contains a higher number of 
kernels (48) with larger size (13 × 13/1) for enhanced expressive capability 
and perception34. The max-pooling layer (3 × 3/2) with stride 2 is used after 
each convolution layer for lower computing cost. To achieve optimal OOTB 
performances, MolMapNet adopts the naive inception layer derived from 
GooLeNet68, which has three parallel small kernels (sizes of 1 × 1, 3 × 3 and 5 × 5) 
for enhanced local perception. Subsequently, the global max-pooling layer is 
used for reduced parameters, followed by two or three dense layers for improved 
nonlinear transformation capability. MolMapNet can be classified into the 
MolD-only single-path model (MolMapNet-D), the FF-only single-path model 
(MolMapNet-F) and the joint MolD and FF dual-path model (MolMapNet-B). The 
maximum number of parameters are no more than 0.83 million.

MolMapNet OOTB hyperparameters and training. These hyperparameters and 
default settings are summarized in Supplementary Table 4. The activation function 
rectified linear unit (ReLU) was used for both classification and regression 
tasks. A small learning rate (0.0001) and batch size (128) were set for all tasks. 
Further lowering the batch size (for example, 64, 8) can substantially improve the 
convergence rate and prediction performance for smaller datasets (Supplementary 
Fig. 3). The batch size 128 was selected upon balanced consideration of the level of 
improved performances for smaller datasets and the efficiency for training larger 
datasets. Other regularization options such as dropout and weight decay were not 
used because the models were easily trained to convergence. In the regression 
tasks, the loss function was set to mean squared error. In the classification tasks, 
the weighted cross-entropy loss32 was used. The early-stopping strategy was used 
for model training, which has been extensively used in the GCNs and other deep 
learning models for reduced over-fitting and computing cost3,4,27,28,32. Multitask 
training can be conducted by either joint training32 or alternate training28 methods. 
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For each multitask benchmark dataset, we used the same training method as that 
of the published deep learning model we aim to compare with. In joint training, 
all tasks were simultaneously trained and the gradient was built on a global joint 
output unit. In alternate training, first a base model was trained by 20 global 
iterations with the optimizer switched from task to task, then every task was 
trained based on the base model by using the validation set as a monitor for early 
stopping. All models were developed by TensorFlow 1.14 on GeForce RTX 2080 
Ti (12 GB memory in each card) and repeated three times in different split indices 
or in random seeds. The training details are provided on GitHub at https://github.
com/shenwanxiang/bidd-molmap/tree/master/paper.

Benchmark datasets, performance evaluation and metrics. The performances of 
MolMapNet were extensively tested on 26 common benchmark datasets (Table 1) 
in comparison with the published performance of the SOTA deep learning models 
on the same datasets and data-split (training, validation, test) sets. The benchmark 
datasets and their data-split sets (Supplementary Table 9) were from seven 
publications3,4,6,27,28,32,69 and the released codes. These include 3 physicochemical, 
3 molecular binding, 14 bioactivity, 3 toxicity and 3 pharmacokinetic datasets, 
where 10 and 16 datasets are for classification and regression tasks respectively, 
and 7 classification and 1 regression datasets are multitask. The compared 
SOTA deep learning models are GCNs (GCNs in MoleculeNet3, D-MPNN5, 
AttentiveFP4), FC-DNNs (AE-based FC-DNN32, Sanofi-Aventis FC-DNN28) 
and CNNs (KekuleScope27). In accordance with the evaluation methods of these 
models, the regression tasks were evaluated by RMSE or R2, and the classification 
tasks were evaluated by ROC-AUC or PRC-AUC. The benchmark datasets of some 
publications are slightly different from one another, partly because of such reasons 
as duplicates. In this work, we used exactly the same datasets as the published 
works we directly compare with (for example, D-MPNN5 and AttentiveFP4).

In MolMap, the missing data points (the true labels) in some multitasks such 
as Tox21 and MUV are processed by a similar approach as that of DeepChem70. 
Specifically, these missing data points are masked as −1 (the classification task) 
instead of 0 (inactive), and subsequently ignored when computing the loss. In 
DeepChem, although the missing data points are masked as 0, an additional 
weight matrix is introduced for all data points including the missing data points. 
When computing the loss, the loss is multiplied by the weight matrix such that the 
missing data points are ignored.

Data availability
The full datasets and corresponding annotations are available on GitHub at https://
github.com/shenwanxiang/ChemBench/tree/v0 and on Zenodo at https://doi.
org/10.5281/zenodo.405486671. Source data are provided with this paper.

Code availability
Codes for the MolMap and MolMapNet package and the parameters are available 
on GitHub and CodeOcean, together with the data used for testing the package, 
at https://github.com/shenwanxiang/bidd-molmap and https://codeocean.com/
capsule/2307823/tree72.
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Extended Data Fig. 1 | The performance of the gCN/gaT models and the MolMapNet-OOTB model on 6 single-task benchmark datasets under 10 
different splits. MolMapNet-OOTB model is compared to the D-MPNN and AttentiveFP models, the 10 different random seeds 2, 16, 32, 64, 128, 256, 512, 
1024, 2048, and 4096 were used for splitting the training set (0.8), validation set (0.1) and test set (0.1). a, 3 regression tasks: Malaria, ESOL, FreeSolv 
under random split. b, 3 classification tasks (BACE, BBBP, and HIV) under the scaffold-split.
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Extended Data Fig. 2 | The performance of the gCN/gaT models and the MolMapNet-OOTB model on 6 multi-task benchmarks under 10 different 
splits. MolMapNet-OOTB model is compared to the D-MPNN and AttentiveFP models, the 10 different random seeds 2, 16, 32, 64, 128, 256, 512, 1024, 
2048, and 4096 were used to split the training set (0.8), validation set (0.1) and test set (0.1). a, 3 classification tasks (Tox21, ToxCast, and SIDER) under 
random split. b, 3 high-data classification tasks (MUV, PCBA, and ChEMBL) under random split.
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Extended Data Fig. 3 | The performance of single-path MolMapNet-D, MolMapNet-F and dual-path MolMapNet-B models on 11 benchmarks. a, 5 
regression benchmark datasets of metric RMSE (ESOL, FreeSolv, Lipop, PDBbind-F, Malaria). b, 6 classification benchmark datasets of metric ROC_AUC 
(BACE, BBBP, HIV, ClinTox, SIDER, Tox21,). These benchmarks are split into training, validation and test set by using both MoleculeNet data-splits (labeled 
as, for example, ESOL-M) and AttentiveFP data-splits (labeled as, for example, ESOL-A). Note: the error bars represent standard error of the mean.
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Extended Data Fig. 4 | The performance of kNN and MolMapNet-F on the 5 classification tasks. The 5 classification tasks are under the MoleculeNet 
data splits, both kNN and MolMapNet-F are based on three sets of fingerprints: PubChemFP, MACCSFP, and PharmacoErGFP (PubFP-MACFP-ErGFP), the 
error bars represent standard error of the mean.
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Extended Data Fig. 5 | Optimization of MolMapNet feature-generation parameters n_neighbors and min_dist using grid-search strategy. The 
parameters n_neighbors and min_dist are in the range of 10~105 and 0~1 respectively, the three datasets ESOL, BACE, and Tox21 are split by the 
MoleculeNet data-splits method. a, optimization of MolMapNet-D model on the ESOL dataset, the performance was evaluated by RMSE of the validation 
set. b, optimization of MolMapNet-F model on the BACE dataset, the performance was evaluated by ROC-AUC of the validation set. c, optimization of 
MolMapNet-B model on the Tox21 dataset, the performance was evaluated by ROC-AUC of the validation set.
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Extended Data Fig. 6 | The TMaP visualization of the BaCe training, validation, test and the novel CheMBl set represented by the 1024-bit Morgan 
fingerprint(r=2). a, the similarity distribution of the four sets in different color by TMAP36: the train_data, valid_data and test_data are the training (646 
high potency inhibitors, 564 low potency inhibitors), validation (77 high potency inhibitors, 74 low potency inhibitors), and testing (50 high potency 
inhibitors, 102 low potency inhibitors) set split from the BACE benchmark dataset using the scaffold-split method, the novel_data is the novel ChEMBL 
set (216 BACE high potency inhibitors, 179 low potency inhibitors from the ChEMBL database). b, the distribution of the compounds with respect to 
activity type (BACE high potency inhibitors in green and low potency inhibitors in blue color), the interactive visualization is provided at: http://bidd.group/
molmap/BACE/BACE.html.
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Extended Data Fig. 7 | The PCa of the latent features of the global max pooling (gMP) layer of the MolMapNet-D solubility model and the 
MolMapNet-F BaCe inhibitor model. a, the MolMapNet-D solubility model. b, the MolMapNet-F BACE inhibitor model. The MolMapNet-D solubility 
model was trained on the ESOL benchmark dataset using the AttentiveFP data-split. The MolMapNet-F BACE benchmark model was trained on the BACE 
dataset using the AttentiveFP data-split (scaffold split).
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Extended Data Fig. 8 | The important input-features of the MolMapNet-D solubility model trained on the eSOl dataset using the attentiveFP 
data-split. a, the feature importance score of the important features for the ESOL training vs. the test set. b, the attention map (the heatmap of the feature 
importance value). Features of higher positive scores are of higher importance. Features of negative score adversely affect model performance. The top 
important features are Estate, Charge, Matrix and several other descriptors concentrated in the specific red, orange, and bright green regions in b.
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Extended Data Fig. 9 | The important input-features of the BaCe inhibitor classification MolMapNet-F model. a, the feature importance score of the 
important features for the BACE training vs. test set (the Pearson correlation coefficient between the two sets is 0.887). and the model attention map 
(the heatmap of the feature importance value, the smarts patterns of the fingerprint features in the six annotated groups are provided in Supplementary 
Table 8). b, the three groups of the important fingerprints. c, the proportion of the top 50 important features and the bottom 50 features in the BACE high 
potency and low potency inhibitors.
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Extended Data Fig. 10 | The average importance of the atoms and bonds of the BaCe inhibitors of two molecular scaffolds in the BaCe benchmark 
dataset. The two molecular scaffolds of BACE inhibitors are 2-aminoquinoline44 and 2-aminobenzimidazole45, the atoms and bonds of each inhibitor are 
color-highlighted based on the presence of top50 important features (green color indicates higher average importance, red color lower importance), and 
their bioactivity in pIC50 values are provided. Compounds with higher portions of the important features (green) tend to have higher activity values. The 
substructures in the dotted circles are consistent with literature-reported structure-activity relationships of BACE inhibitors in previous study44.
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