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Abstract

Mass spectrometry-based proteomic technique has become indispensable in current exploration of complex and dynamic biological
processes. Instrument development has largely ensured the effective production of proteomic data, which necessitates commen-
surate advances in statistical framework to discover the optimal proteomic signature. Current framework mainly emphasizes the
generalizability of the identified signature in predicting the independent data but neglects the reproducibility among signatures
identified from independently repeated trials on different sub-dataset. These problems seriously restricted the wide application
of the proteomic technique in molecular biology and other related directions. Thus, it is crucial to enable the generalizable and
reproducible discovery of the proteomic signature with the subsequent indication of phenotype association. However, no such tool has
been developed and available yet. Herein, an online tool, POSREG, was therefore constructed to identify the optimal signature for a set
of proteomic data. It works by (i) identifying the proteomic signature of good reproducibility and aggregating them to ensemble feature
ranking by ensemble learning, (ii) assessing the generalizability of ensemble feature ranking to acquire the optimal signature and (iii)
indicating the phenotype association of discovered signature. POSREG is unique in its capacity of discovering the proteomic signature
by simultaneously optimizing its reproducibility and generalizability. It is now accessible free of charge without any registration or
login requirement at https://idrblab.org/posreg/
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Introduction

Proteomics based on mass spectrometry and other
technologies is currently indispensable for researchers
exploring complex dynamic biological processes [1–3].
The developments of relative instruments that underpin
proteomics technology (such as data-independent
acquisition) also go a long way to ensuring an effec-
tive production of proteomic data [4–7]. Therefore,
commensurate advance in the statistical framework is
necessitated for finding the sets of proteomic features
that are truly significant in the biological process, which
are so-called proteomic signatures [8, 9]. In such a
context, feature selection (FS) emerged as a strategy
for selecting key features and is playing an increasingly
important role in the analysis of proteomic data [10]. A
variety of FS methods have been developed and widely

used in proteomics studies [11, 12] to train classifiers
with better performance under given training sets, so
that generalizability is widely regarded as a criterion to
evaluate the performance of the selected signature [13,
14].

However, the current FS methods mainly emphasize
the generalizability of the identified signature in pre-
dicting independent datasets [15] but neglect the repro-
ducibility among signatures discovered from different
sub-datasets [16]. Therefore, these current FS methods
are usually sensitive to the perturbations in training
datasets [17, 18], which leads to low overlap among signa-
tures discovered from the different training sub-datasets
generated from the same origin dataset and thus seri-
ously restricted the extensive application of proteomics
in molecular biology and other directions [19]. A practical
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proteomic signature should not only be generalizable but
also reproducible [20–22], in other words, it should not
only have good predictive performance in independent
dataset but also should be stable regardless of the noise
arising from measurement variability and biological dif-
ferences [11]. To realize reproducible FS thus enhance
the reliability and practicality of FS, reproducibility has
thus been proposed as an equally important criterion
as classification accuracy [23]. Moreover, the ensemble
feature selection (Ensemble-FS) strategy has also been
proven efficient in generating robust signature compared
with typical FS methods [24–28]. This strategy is con-
ducted by generating multiple signatures using differ-
ent training sub-datasets (homogeneous) or FS methods
(heterogeneous) and subsequently combing them into
an ensemble signature [25, 29, 30]. Due to their capac-
ities of enhancing FS reproducibility, the integration of
Ensemble-FS and reproducibility evaluation is key for
achieving better tradeoff between generalizability and
reproducibility.

Currently, some powerful tools are available for
biomarker analysis or FS (such as MetaboAnalyst [31] and
MinE-RFE [32]), but the majority of them were developed
only based on one single FS method and evaluated the FS
solely on generalizability [31–35]. There is also one online
tool called EFS that provides a heterogeneous ensemble
of eight FS methods for binary classification studies and
calculates the importance weight for each method in
the ensemble [36]. However, the available tools do not
provide any quantitative assessment for generalizability
or reproducibility to demonstrate its superiority, nor
does it provide any phenotype interpretation of the
resulting signature. Therefore, it is essential to enable
the generalizable and reproducible discovery of the
proteomic signature with a subsequent indication of its
phenotype association.

In our research, an online tool, POSREG, was con-
structed to identify the signature from a given set of pro-
teomic data using comprehensive assessment from both
generalizable and reproducible perspectives. This tool
works by (a) identifying various signatures of good repro-
ducibility based on their relative-weighted consistency
(CWrel) and aggregating them into the ensemble feature
rank using ensemble learning; (b) assessing the gener-
alizability of ensemble feature rank to acquire optimal
signature by area under the curve (AUC)-based golden
section search and (c) assisting users to indicate the
phenotype association of the acquired optimal signature
by providing gene ontology (GO) enrichment. With the
increasingly accumulated concern about reproducibil-
ity [37] and phenotype association [37], the POSREG is
unique for its capacity in comprehensively identifying
optimal signature from both generalizable and repro-
ducible perspectives and thus expected to be popular
in proteomics and precision medicine [38–43]. The POS-
REG is accessible without login requirement at https://
idrblab.org/posreg/

Materials and methods
Benchmark datasets collected and analyzed
in this study
To evaluate the performance of POSREG and prove
the superiority of its underlying algorithm, the pro-
teomics datasets available in the PRIDE database [44],
ProteomeXchange [45] and iProx [46] were fully reviewed.
Seven benchmark proteomics datasets with at least
20 samples from PRIDE [44] were finally collected and
further analyzed as case studies in this work according to
the following criteria: (1) datasets should be comparative
proteomic studies; (2) datasets should encompass a
broad biological research orientation; (3) the sample size
for each group (control and case) in a study should be six
at least and the sample size should be at least 20. These
benchmarks were labeled as PXD000672, PXD002882,
PXD003972, PXD004880, PXD005144, PXD006129 and
PXD008840. The detailed descriptions of them are
established in Table 1. To facilitate the directly using
these benchmark datasets to conduct their analysis
without pretreatment, pretreated benchmark datasets
PXD005144 and PXD003972 are provided in Supplemental
Information [47–49].

FS methods employed and analyzed in this study
FS methods are commonly categorized into filter,
wrapper and embedded types [50]. The filter methods
only pick up the intrinsic characteristics of the features,
whereas the wrapper and embedded methods itera-
tively consider the classification performance of the
features in specific models [51]. Although the wrapper
and embedded methods are supposed to give better
performance than the filter, the filtering methods are
usually faster for calculation and the resulting signatures
are also more universally applicable to different machine
learning models [52, 53]. Moreover, a set of features
with significance ranking (output of filter method) is
more suitable for ensemble learning than a feature
subset with no priority (output of the wrapper and
embedded methods) [50]. In summary, the filter method
is suitable for ensemble learning based on onerous
repeating computation and is therefore adopted in
POSREG.

To make POSREG applicable to most common situa-
tions, nine different filter FS methods based on varied
feature searching and scoring theories were employed
and analyzed in POSREG, which contained univariate
filter methods (fold change analysis, Wilcoxon rank-sum
test, etc.) and multivariate filter methods (correlation-
based method, entropy-based filter, etc.). The categories
and the brief introductions of these FS methods are
demonstrated in Table 2. Furthermore, the detailed
description of these nine FS methods which depicted
their requirement of data distribution and structure are
provided in Supplementary Method S1.
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Table 1. Seven benchmark proteomics datasets were collected and analyzed in this study.

Dataset ID References Data acquisition No. of features Description of samples

PXD000672 Nat Med.
21:407-13, 2015

DIA 3132 12 renal cell carcinoma
samples from 6 patients

versus 12 healthy samples from 6
individuals

PXD002882 Nat Commun.
7:13419, 2016

DDA 4169 21 samples from Crohn’s
disease patients

versus 10 samples from healthy
individuals

PXD003972 Cell Rep.
18:3219-3226,
2017

DIA 901 20 samples from 4
GRB2OST knock-in mice

versus 20 samples from 4
different GRB2WT mice

PXD004880 Sci Rep. 7:14818,
2017

DIA 5540 18 samples from Down
syndrome patients

versus 18 samples from healthy
individuals

PXD005144 Cancer Med.
6:1738-1751, 2017

DDA 653 66 tumor samples from 22
pancreatic cancer patients

versus 36 samples from 12
pancreatitis patients

PXD006129 Cell Host Microbe.
23:27-40, 2018

DDA 3243 15 samples from
western-style diet-fed
mice

versus 14 samples from chow
diet-fed mice

PXD008840 Nat Commun.
9:1012, 2018

DDA 5439 84 tumor samples from
gastric cancer patients

versus 84 normal tissues from the
gastric cancer patients

FA: formaldehyde; GRB2OST: GRB2 tagged with a One-STrEP-tag (OST); GRB2WT: wild type GRB2. The dataset ID starting with PXD or IPX indicated that the
corresponding dataset was collected from the Proteomics Identification Database (PRIDE) [44] or integrated Proteome resources (iProx) [46].

Table 2. Brief introduction of FS methods employed and analyzed in this study

FS method
(Abbreviation)

Type Brief introduction

CFS Multivariate filter Evaluate feature subset based on the prediction ability of each
feature in it and the correlation between them [126].

Entropy-based filters
(ENTROPY)

Multivariate filter Select features based on the contribution of information related to
class variables. Compensate for information gain bias [127].

FC Univariate filter Select features that have large differences between the control
and case groups. Calculate FC by the ratio of mean intensities of
proteins between the two groups [128].

LMEB Univariate filter Evaluate the differential abundance of features by drawing a
volcano plot, which measures the differentially accumulated
features based on fold changes and t statistics [129].

PLS-DA Multivariate filter Predict variables that maximize differences among predetermined
samples. Infer classification of unclassified sample groups based
on the calibration set with known class distribution [130].

ReliefF
(REF)

Multivariate filter Estimate attributes based on the degree of value differentiation
between near instances [131].

Significance analysis of microarrays
(SAM)

Univariate filter Score each gene based on the change in gene expression relative to
the standard deviation of repeated measurements [132].

Univariate t-test
(t-test)

Univariate Filter Rank features based on P-values. Features with a P-value <0.05 are
considered to be significant [20].

Wilcoxon Rank-sum test
(Wilcox)

Univariate Filter Use magnitude-based ranks to establish the significant difference
between the two groups. The significant difference shows when
the ranks of the two groups are significantly separated [133].

Metrics used to grope and evaluate the optimal
signature
POSREG comprehensively used two types of well-
established metrics in the process of identifying
proteomic signatures optimal in both terms of repro-
ducibility and generalizability.

Metrics Type I. Reproducibility of Multiple Signatures
Identified from Different Data Subsets.

Experts working on the discovery of predictive pro-
teomic biomarkers have always been plagued by the
difficulty of reproducing their research results, even with
the same input dataset and FS method, which directly
constrained the practicability and reliability of their

identified biomarkers [54–57]. To increase the confi-
dence of domain experts in their research findings
and identified biomarkers, reproducibility has thus
become an equally important criterion as diagnostic
accuracy [23, 58, 59]. A series of metrics based on the
distinct underlying theory, including Jaccard’s index
[60], Percentage of overlapping Gene [61], Pearson’s
correlation coefficient [62], Weighted Consistency [63]
and so on, have thus been proposed for reproducibility
evaluation. Nevertheless, most of them are susceptible to
the size of feature subsets so that they are unsuitable for
the reproducibility evaluation and comparison of feature
subsets with different sizes.
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The CWrel [63] was proposed based on weighted con-
sistency, it is calculated based on multiple signatures, it
counts the occurrence times of each feature in every sin-
gle set of signatures and the total occurrence times of all
features in all signatures, then uses the specific ratio of
these two to represent the overall robustness [28, 55, 64–
66]. The detailed description of its statistical calculation
is further demonstrated in Supplementary Method S2.
CWrel satisfied the property of randomness correction
and is thus empowered to avoid the ‘subset-size-bias
problem’ [63]. Therefore, POSREG introduced the CWrel

to compare the reproducibility among signatures with
different sizes of feature subsets in the real-time process
of optimal signature discovery.

Metrics Type II. Diagnostic Accuracy of Classification
Model Built on Identified Signatures.

The prime goal of FS is to identify a series of truly
significant markers, which could be employed to describe
the biological differences [67]. This prime goal demands
the identified markers to be generally applicable to the
data not involved in FS, which is generally called the
generalizability of FS [68]. And the major way of val-
idating the generalizability of identified markers is to
evaluate the diagnostic accuracy of classification models
built on these markers in an independent dataset [69–
71]. Therefore, the receiver operating characteristic (ROC)
analysis and the AUC metrics were introduced in POSREG
to assess the diagnostic accuracy of the classifier con-
structed based on the identified signature.

The generalizability of FS method was assessed by a
5-fold nested cross-validation (CV) using the following
steps. First, the original data were split into 5-fold, each
fold was iteratively selected as a test set. Second, for
each outer iteration, the remaining data were further
split into 4-fold, each fold was iteratively selected as a
validation set and the left folds were training set. Third,
for each inner iteration, the training set was adopted
for FS and model training with different parameters,
and the validation set was used to assess the quality of
this model. Fourth, the best model of each inner loop
was selected and was evaluated on the test set of each
outer loop by the AUC value calculated using the ROC
and AUC function in the R packages pROC [72]. Finally,
the generalizability is calculated by averaging the AUC
values of all 5-fold of the outer loop.

Nested CV ensuring the unbiased assessment
of generalizability
CV is a well-established technique for assessing the gen-
eralizability of FS [73]. This technique divided the dataset
into n parts, picked out one part to assess the generaliz-
ability, and the left n-1 parts were used to perform FS and
build a classifier [73]. This process would be repeated n
times until every part had ever been used for assessing
generalizability [73]. The final generalizability is the aver-
age of all folds [73]. However, due to the extensive exper-
imental costs and serious technique limitations [74], the
‘small sample size’ problem was reported to be one of

the bottlenecks in current proteomic studies, which were
typically <100 [75]. The performance estimations of the
‘small sample size’ study by n-fold CV were reported to be
overoptimistic due to the excessive variances and biased
results [76, 77]. So far, several strategies are developed to
address the small sample size problem [76, 77]. Among
them, a strategy named ‘nested CV’ was proposed as
an effective way of giving unbiased performance estima-
tions for the dataset of not only large but also relatively
small sample size, which was thus adopted in this study
to assess the generalizability [78, 79]. According to the
original publications of ‘nested CV’ [78, 79], the studies
of ≥20 samples can achieve unbiased performance esti-
mation. Thus, it is recommended to analyze the dataset
of sufficient samples (≥20) by POSREG, and the analytical
results for the dataset of fewer than 20 samples should
be considered with caution.

The nested CV also split the datasets into n folds
and one portion of data was iteratively picked out as a
test set for generalizability assessment, which formed
the outer loop. The difference with typical n-fold CV is
that the remaining n-1 parts are further iteratively split
into training set and validation set for FS and parameter
tuning, which formed the inner loop. For iterations of the
inner loops, new models developed on different feature
sets and parameters were validated by validation sets,
and the best performed model will be selected to be
evaluated on the test set of each outer loop. The final
generalizability is the average of all n estimates in outer
loops [78, 79]. As shown in Figure 1, this strategy first
set apart a test set (Test 1) before training the models,
and left this test set not being used in modeling and
FS. Second, the remaining data (Remaining 1) were iter-
atively split into Train and Validation sets for training
and validating the model. Third, the performances of
model construction were assessed based on the Test 1
data that were set apart at the beginning. Finally, the
above processes were repeated by another four times via
setting apart four additional test sets (Test n, n = 2,3,4,5),
and those five test sets were independent among each
other (without overlap among any test sets). All in all, as
shown in Figure 1, both modeling and FS were integrated
into the CV process, and the testing sets were not used
during this process.

Ensemble-FS for aggregating multiple proteomic
signatures
Ensemble learning was proposed based on the proverb
‘two heads are better than one’, which combined multi-
ple models to obtain better performance than a single
one [80]. Ensemble learning was initially popular only
among classifications and has gradually been found to
be also efficient for improving other machine learning
disciplines, such as FS [81]. Ensemble-FS combined the
output of several feature selectors (generated from dif-
ferent methods or training datasets) to form an ensemble
feature ranking. The place of each feature in ensemble
ranking is jointly determined by its previous rankings
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Figure 1. Schematic diagram of the nested CV.

[81]. Ensemble learning was introduced to aggregate mul-
tiple proteomic signatures generated in the process of
reproducibility evaluation into ensemble feature ranking.
The homogeneously distributed ensemble, which inte-
grated multiple feature list generated using the same
FS method and different training datasets, is provided
in POSREG. Six ensemble methods including arithmetic
mean, geometric mean, median, min, robust rank aggre-
gation (RRA) and Stuart were provided using aggregateR-
anks function in R packages RobustRankAggreg [82].

AUC-based search for acquiring optimal
signature of high accuracy
Given that the performance of the classifier is strongly
influenced by the number of features [83], how many
features should be added to the training set to achieve
the most accurate classifier is a frequently encountered
issue [84]. Due to the constrained computation resources,
it is impractical to assess the accuracy of every possible
combination of proteomic features using the exhaustive
method [84]. Thus, Liu’s group proposed an iterative
golden-section search method based on 5-fold AUC to
approximate the optimal size of features of high accuracy
[85]. The golden-section search algorithm is a classic
algorithm for finding the extreme of a single-variable
function, the rationale behind this approach is to succes-
sively narrow down the range of search intervals inside
which the extremum is believed to exist [86]. Supposed

that AUC is the function of feature size, then this function
could only be a unimodal function (which has a single
optimum in the domain of definition) or a monotonically
increasing function (in which the dependent variable
increases with the independent variable in the domain
of definition) if the features were added into signature
in order of feature significance ranking [85]. Under such
supposition, the golden-section search algorithm could
be adopted to find the optimal signature with the highest
AUC [85].

POSREG used the basic idea of golden-section search,
optimized algorithm and implemented it in R language.
The AUC-based golden-section search was conducted
after the generation of ensemble feature ranking, it
iteratively selected feature subsets with different sizes
according to the golden ratio to build classifiers and
evaluate AUC separately, then continuously narrowed
the range of possible feature size based on AUC
value and finally finds the optimal signature with the
highest AUC. The detailed description of the AUC-based
golden-section search for acquiring optimal signature
with the highest accuracy is further demonstrated in
Supplementary Method S3.

Phenotype association indication based
on signature enrichment analysis
Proteomic signature determined in a proteomic study
should be directly related to the phenotype (preferably
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as upstream as possible) and plays a real role in the
phenotype as opposed to merely being correlated [69].
GO resource provides computable knowledge about the
function of gene and gene products and is extensively
adopted for the analysis of omics-related data [87–91]. To
help users intuitively understand the phenotype associa-
tion of acquired proteomic signatures, enrichment anal-
ysis of selected proteomic signatures can be performed
in POSREG using the enrichGO function of the R package
clusterProfiler [92].

To measure the level of phenotype association, all
features in the identified proteomic signature are first
enriched based on their involved biological process, cel-
lular component, molecular function or all terms. Then,
a bubble chart displaying top30 GO terms with the least
P-values was plotted by R package ggplot2 [93] to better
visualization of the enrichment result [94–97]. Finally, the
users can relate these enriched terms to their studied
phenotype, and therefore comprehend the relevance of
the identified features to their studied phenotype. On
the one hand, signature enrichment analysis in POS-
REG could be instructive for studies where phenotypic
relationships are still unclear. On the other hand, this
additional function could provide some bidirectional val-
idation for researches with established phenotype asso-
ciation.

Webserver implementation and requirements
for input file format
POSREG is developed based on the operating system of
CentOS Linux v7.4.1708, which is configured with Apache
HTTP web server v2.4.6 and Apache Tomcat servlet con-
tainer. The main web interface is constructed using the
R package shiny v0.13.1 and the webserver was deployed
on the shiny-server v1.4.1.759 (R v3.4.1). Apart from Shiny
package, POSREG also employed various other R pack-
ages in the background processing, including affy [98],
clusterProfiler [92], coin [99], DOSE [100], ggplot2 [93],
mixOmics [101], pathview [102], pcaMethods [103], pROC
[72], RobustRankAggreg [82] and so on. Both the official
and mirror sites of POSREG are accessible to all users
without any login requirement by most commonly used
web browsers including Google Chrome, Mozilla Firefox,
Safari, Microsoft Edge and Internet Explorer (10 or later).
And the source code of POSREG enabling the assessment
on a local computer is also provided, users only need
to configure the R environment, RStudio software and
install the corresponding R packages using the packages
we provide.

POSREG is capable to handle datasets in commonly
used formats including txt, xlsx, tab-delimited and csv.
The row of the input file should be samples and the
column of the input file should be features, respectively.
In particular, the first row of the input file should be
the feature name, the first column must be the sample
name and the second column indicates the class label
(case or control) of each sample, it is important to note
that the name of the second column must be exactly

‘Class’. In addition, if the user needs to perform pathway
enrichment, the feature name of the input file must be
annotated to UniProt ID or ENTREZID.

Results and discussion
Validating the feasibility of using CWrel for FS
reproducibility evaluation
Researchers dedicated to biomarkers discovery have
always been focused on discovering efficient signatures
that can precisely reflect the biological difference
[52] but ignored the reproducibility of their proposed
signatures [104]. This leads to the problem of low
reproducibility of signatures proposed by different
research groups for the same research issue, even though
they all achieved good prediction performance [55]. To
ensure the stability of identified features and ultimately
enhance their practicality, the metrics CWrel was applied
to assess the reproducibility in the pipeline of POSREG.

As demonstrated in Materials and Methods and
Supplementary Methods S1, CWrel’s unique trait of
avoiding the ‘subset-size-bias problem’ gives it the
ability to compare the robustness between proteomic
signatures of different feature sizes [63]. Therefore, it
is feasible to use CWrel as a reproducibility assess-
ment metric to find the most robust feature size. To
comprehensively validate the feasibility of using CWrel

for reproducibility assessment, the benchmark dataset
PXD000672 [105] was analyzed as an example. For each
of the nine FS methods of POSREG, (i) firstly 50 sub-
datasets were randomly selected from the benchmark
dataset using stratified sampling with put-back, the
sampling process is sample-wise and half of the samples
from the control group and case group was randomly
selected each time; (ii) and then these sub-datasets were
analyzed using this particular FS method to generate
50 feature rankings; (iii) after that numerous of feature
subsets with different feature sizes from top 1% to
top 50% of total feature amount were divided from
these feature rankings; (iv) lastly, the feature subsets
with same feature size were collected to calculate
the CWrel value under particular feature size. These
four preceding steps make up one single independent
replicated trial which can illustrate the trend of CWrel

with the proportion of selected features. It is worth
mentioning that although the random sampling method
adopted here was stratified sampling with put-back, a
conditional statement was set to ensure the difference
among different sub-datasets (with at least one distinct
sample in both control and case groups). In other words,
based on the random stratified sampling and conditional
statement, it was guaranteed that those sampled sub-
datasets were different from each other, which could
thus be adopted to assess the CWrel.

As illustrated in Figure 2, the aforementioned indepen-
dent replicated trial was repeated 50 times under each of
all nine FS methods in POSREG. On the one hand, these
repeats turned out to have broadly consistent trends in
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Figure 2. The level of stability of CWrel-based FS reproducibility evaluation was assessed by comparing the trends in CWrel between different independent
replicated trials in benchmark dataset PXD000672 [105]. The x-axis in each sub-figure denoted the proportion of features selected into CWrel calculation,
and the y-axis denoted the value of CWrel. The trend in CWrel of each independent replicated trial was represented by a thin light-blue line and the
median value of all replicated trials was connected and drawn as a thick dark-blue line. The maximum points of all 50 repeats were marked red dots.

CWrel (denoted by thin light-blue solid lines) and the
maximum points of these trials (denoted by red solid
dots) always occurred at the close coordinates for one
particular FS method. On the other hand, the curves
of CWrel for different methods tend to trend differently
and their maximum points occurred in different coordi-
nates. These results indicate that CWrel is a stable and
robust metric for FS reproducibility evaluation and the
CWrel-based FS reproducibility evaluation is required for
choosing appropriate methods and feature subset sizes
because the reproducibility varies between FS methods
and the proportion of selected features.

The same analyses were carried on the other five
benchmark datasets in Figure 3. Particularly, these
benchmarks were also analyzed by all nine FS

methods in POSREG, and the resulting maximum points
of their 50 times independent replicated trials are
denoted by small hollow dots in different colors. On
the one hand, as shown in Figure 3, under the same FS
method, the proportion of selected features where CWrel

reaches its maximum varies widely across datasets.
Take the Wilcoxon Rank-sum Test (Wilcox) method
as an example (whose maximum points are denoted
by pink hollow dots). It was found in the results of
some benchmarks (PXD000672, PXD003972, PXD005144)
that CWrel reached the maximum value with a very
small proportion of selected features, whereas the
other benchmarks (PXD002882, PXD006129, PXD008840)
reached the maximum CWrel with a medium proportion
of feature. On the other hand, the reproducibility of the
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Figure 3. The scatter plot for maximum points of the CWrel-proportion of selected feature curve generated from CWrel-based FS reproducibility
evaluation for six benchmark datasets under nine FS methods. The x-axis in each sub-figure denoted the proportion of features selected where CWrel
reaches its maximum value, and the y-axis denoted the maximum value of CWrel. All the maximum points were denoted by hollow dots, whereas
different colors showed different methods.

same FS method also varied considerably across different
datasets. Again taking the Wilcox method as an example,
if we use 0.5 as a cutoff, the maximum value of CWrel

is regarded as high in the results of some benchmarks
(PXD000672, PXD003972, PXD005144, PXD008840) and
low in the results of other benchmarks (PXD002882,
PXD006129). Therefore, the optimal FS method in terms
of reproducibility varies from data to data, and it is
essential to perform a CWrel-based FS reproducibility
evaluation for choosing an appropriate FS method.

Enhancing the reproducibility by maximizing
CWrel and ensemble learning
Denote the proportion of selected features when CWrel

reaches its maximum value with PSF
max

(
CWrel

), it is not

hard to discover from Figures 2 and 3 that PSF
max

(
CWrel

)

is an intermediate size in most cases. That is to say, for
the stability of FS, the number of features is not the less
the better, nor the more the better [106]. This indicated
that a specific FS method has a clear limit of power of
recognizing features [107], which means it considers all
of the top PSF

max
(

CWrel

) features to be entirely significant

for classification when dealing with a specific set of data
[108]. If the FS method was adopted to select a fewer
proportion of features thanPSF

max
(

CWrel

), the stability of

FS method would decrease because of the difficulty in
choosing between the top PSF

max
(

CWrel

) significant fea-

tures. And vice versa, if the proportion of features need
to be selected is more thanPSF

max
(

CWrel

), the stability of

FS will also be reduced because the excess part will be
randomly selected among these redundant features that
are considered unimportant. Therefore, FS reproducibil-
ity could be enhanced if top PSF

max
(

CWrel

) features are

adopted for downstream analysis to maximize CWrel.
Maximizing the CWrel value could only be used to

determine the most stable feature subset size under a
specific FS method [63]. Nevertheless, even at the most
stable feature subset size, there will still be some differ-
ences in the multiple feature subsets picked out using
the same FS method multiple times [85]. Therefore, how
to comprehensively consider the different rankings of
each feature in multiple feature subsets and derive a
conclusive feature ranking from them was a problem
[17]. Ensemble-FS has been proposed as a solution for
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the aforementioned problem because of its ability to
combine the output of multiple feature selectors into a
more stable and efficient ensemble feature ranking [29].
Therefore, ensemble learning is introduced in POSREG to
aggregate the top PSF

max
(

CWrel

) features of multiple fea-

ture rankings generated during CWrel calculation to form
an ensemble feature ranking, which further enhanced
the FS reproducibility on the basis of maximizing the
CWrel.

Determining the optimal signature by
AUC-based golden section search
The ensemble feature ranking is generated with enhanced
reproducibility by maximizing CWrel and ensemble
learning. However, the generalizability of the resulting
ensemble feature ranking has not been assessed yet.
Moreover, under some circumstances, the overall CWrel

is significantly low [109], so that even if the top
PSF

max
(

CWrel

) features are selected for ensemble, the

resulting ensemble feature rank will potentially contain
too many features [110]. As the performance of the classi-
fier is strongly influenced by the number of features [83],
the classifier built on too many features is insufficient
and impractical [111]. Therefore, a rapid and sufficient
generalizability assessment to determine the optimal
proteomic signature based on the ensemble feature
ranking was embedded into the POSREG workflow, which
is the AUC-based golden section search. As discussed in
Materials and Methods and Supplementary Method S4,
the AUC-based golden section search can find the
maximum of the single variable function (accuracy
against feature size) with iteratively narrowing searching
range [85], so that POSREG can not only assess the
generalizability of selected features but also control
the number of features to some extent through the
procedure of AUC-based golden section search.

The capacity of POSREG in improving
reproducibility and generalizability
To verify the superiority of POSREG in both reproducibil-
ity and generalizability perspectives, two benchmarks
PXD005144 [112] and PXD008840 [113] were collected
and assessed by both POSREG workflow and traditional
FS workflows for comparison. As for the traditional FS,
the most common way is to directly choose the top 50
or top 100 features to form the final signature, whereas
some researchers choose to use the top 5% or top 10%
of the total feature [114]. Thus, the POSREG workflow is
compared with traditional FS workflows top 50, top 100,
top 5% and top 10% simultaneously under two types of
FS methods: univariate filter methods [represented by
fold change (FC) and linear models and empirical Bayes
(LMEB)] and multivariate filter methods [represented
by correlation-based feature selection (CFS) and partial
least squares discriminant analysis (PLS-DA)]. Each
workflow was repeated 50 times with different samples
produced by the bootstrap sampling and the comparison

was based on the mean value of 50 repetitions to avoid
the serendipity.

As shown in Figure 4a, the reproducibility was assessed
by the mean value of CWrel and drawn with an orange
bar at the upper of mirrored bar plot, whereas the
generalizability was assessed by the mean value of AUC
and drawn with a blue bar at the lower of mirrored bar
plot. POSREG workflow achieved higher performance in
reproducibility and generalizability in most cases. This
result is further corroborated by Figure 4b as the violin
plot of POSREG is more concentrated than the other four
groups and its median value is also in a higher position.
To conclude, POSREG performed better in both CWrel and
AUC than traditional methods, which verified its capacity
in improving both reproducibility and generalizability of
filter FS methods.

Comparing POSREG with established wrapper
and embedded FS techniques
POSREG workflow has demonstrated better reproducibil-
ity and generalizability than traditional filter methods in
Figure 4, but its superiority or inferiority to the wrapper
and embedded method is not yet known, and it is
thus necessary to compare POSREG with established
wrapper and embedded FS techniques. Random forest-
recursive feature elimination (RF-RFE) [115] and least
absolute shrinkage and selection operator (LASSO) [116]
were chosen as representatives for the comparison
with POSREG as well-established and common used
embedded and wrapper FS techniques, respectively. Four
benchmark datasets PXD003972 [117], PXD004880 [118],
PXD005144 [112] and PXD008840 [113] were collected and
assessed using RF-RFE, LASSO and POSREG workflow 50
times to generate 50 different signatures. Then the CWrel
and AUC metrics of these signatures were calculated
to represent the reproducibility and generalizability
of the corresponding FS method. The assessing result
is illustrated in Figure 5. As shown in Figure 5, the
AUC values for all three methods are fairly good, but
POSREG methods achieve higher CWrel while getting
comparable AUC values as RF-RFE and LASSO. From this,
it can be seen that POSREG workflow has equivalent
generalizability and superior reproducibility comparison
to the established wrapper and embedded FS techniques.

Demonstrating the superiority of POSREG with
the case study on PXD005144
To better demonstrate the superiority of POSREG, we
compared the obtained biological finding for PXD005144
using POSREG and that from the corresponding pub-
lished paper [112]. In the original publication of PXD005144,
significantly different proteins between two groups were
identified using three FS methods, and all these proteins
were further compared with each other to get a list of 20
proteins that are common to all three methods [112].

To give a comparison between our results and
the results provided in the original publication of
PXD005144, the following steps were conducted: (a) FS
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Figure 4. Verifying the capacity of POSREG in improving reproducibility and generalizability of filter FS methods. Two benchmarks PXD005144 and
PXD008840 were collected and assessed by both POSREG and four traditional FS workflows using two representative univariate filters (FC, LMEB) and
multivariate filters (CFS, PLS-DA), which directly take top 50, top 100, top 5% and top10% of ranked features as the signature. The assessment was
repeated 50 times to avoid contingency in the results. (a) The mean value of CWrel (orange) and AUC (blue) is drawn as mirrored bar plots. (b) The violin
plot showing the distribution of the AUC value for 50 repetitions.

was conducted using default FS method Linear Model &
Bayes with default parameters on POSREG for 10 times,
and the resulting 10 optimal feature lists were collected;
(b) for each selected feature, the occurrence in 10 optimal
feature lists was calculated; (c) the selected feature was
sorted by their occurrences in the 10 optimal feature
lists and compared with those reported in PXD005144’s
publication [112].

The protein numbers of 10 optimal lists varied from
24 to 34 and their corresponding AUC values were

always over 0.95. Figure 6 shows 22 proteins consistently
occurred (occurred at least 8 times) in 10 optimal
feature lists. Among these 22 consistently occurred
proteins, 17 of them were also reported in the original
publication of PXD005144 [112], which were colored
in blue in Figure 6. Besides, there were also five new
proteins only identified by POSREG, which were colored
in orange in Figure 6. To determine whether these
POSREG’s newly identified proteins were relevant to
the studied disease, a comprehensive literature review
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Figure 5. Comparing POSREG with established wrapper/embedded FS techniques. Four benchmark datasets PXD003972, PXD004880, PXD005144
and PXD008840 were used to assess POSREG, RF-RFE (well-established wrapper method) and LASSO method (well-established embedded method),
respectively. (a) The mean value of CWrel (orange) and AUC (blue) is drawn as mirrored bar plots. (b) The violin plot showing the distribution of the AUC
value.

was conducted. Vitronectin (UniProt Entry: P04004) was
reported as a major driver of the differentiation process
in the pancreatic cancer model [119]. Ceruloplasmin
(UniProt Entry: P00450) was suggested to be a promising
marker for pancreatic patients negative for CA19-9 [120].
Chemokine-like factor superfamily member 1 (UniProt
Entry: Q8IZ96) was identified to be prognostic and high
expression was unfavorable in pancreatic cancer by
HUMAN PROTEIN ATLAS [121]. Epidemiologic evidence
indicated that high glucose was linked to an increased
risk for pancreatic cancer [122]. High glucose conditions
can enhance the cancer progression by upregulating the
expression of alpha-mannosidase 2× (MAN2A2, UniProt
Entry: P49641) at both mRNA and protein levels in cancer
[123]. Although no existing report was showing direct
relevance between intraflagellar transport protein 88
homolog (IFT88, UniProt Entry: Q13099) and pancreatic
cancer, it had been previously investigated as a tumor
suppressor in other cancer such as hepatocellular
carcinoma, breast carcinoma and so on [124].

To conclude, POSREG could not only identify proteomic
signatures with great generalizability and reproducibility
but also provide valuable clues for discovering proteomic
features with significant biological meaning. Moreover,
the results also implied that there is some relationship
between phenotype association with both generalizabil-
ity and reproducibility, by improving the reproducibility
of FS, the generalizability of identified signature would
be improved by eliminating the non-predictor features

and the phenotype association of selected features would
also be improved by reducing the chances of erroneous
elimination of predictor features.

Standard workflow and operating procedure
of POSREG
The standard workflow of POSREG can be divided into
three steps (Figure 7): (1) reproducibility enhancing by
maximizing CWrel and ensemble learning. This step
mainly performs multiple FS and then finds the most
robust feature size among these generated proteomic sig-
natures and aggregates them into the ensemble feature
ranking, which included: (i) data uploading, (ii) data pre-
processing (missing value imputation, data filtering, data
normalization and data transformation), (iii) multiple FS
generating multiple feature ranking (homogeneous, het-
erogeneous or hybrid), (iv) reproducibility evaluation of
multiple feature ranking based on CWrel and (v) ensem-
bling the most robust signatures with highest CWrel. (2)
Generalizability assessing using the AUC-based golden
section search. The ensemble feature ranking generated

in step 1 is further analyzed using the AUC-based golden
section search methods proposed in Liu’s research
[85] to discover the top assemble of features with the
highest AUC and assign it as the optimal signature. (3)
Phenotype association indicated via functional enrichm
ent analysis. The optimal signature is ‘optimal’ only
in the theoretical perspectives of reproducibility and
generalizability, not in practice. Therefore, the final
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Figure 6. Demonstrating the superiority of POSREG with the case study on PXD005144. The benchmark PXD005144 was analyzed using POSREG 10 times,
the resulting 10 optimal feature lists were collected and the number of times each feature occurred in the 10 optimal feature lists was calculated. The
number of occurrences of consistently occurred protein (occurred at least 8 times) among 10 optimal feature-lists is drawn as a bar plot. The blue bar
represented the co-identified protein which was both identified by POSREG and the original paper, and the orange bar represented POSREG’s newly
identified protein.

Figure 7. General workflow of POSREG: (I) Reproducibility enhancing by maximizing CWrel and ensemble learning; (II) Generalizability assessing using
AUC-based golden section search; (III) Phenotype association indicating via functional enrichment analysis.

step is a GO-based enrichment analysis to indicate the
phenotype association level of the optimal signature
[125].

Conclusions
POSREG was constructed and validated to enable
the generalizable and reproducible discovery of the
proteomic signature with phenotype association

indication. It is unique for its capacities of identifying
proteomic signatures of good reproducibility and gen-
eralizability using CWrel, ensemble learning and AUC-
based golden-section search. Therefore, POSREG can
facilitate current proteomics-based molecular biology
researches and has great potentiality for application in
proteomic signatures identification and other research
requiring FS.
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Key Points

• An online tool POSREG was constructed to simultane-
ously optimize the reproducibility and generalizability of
proteomic signature discovery.

• POSREG identified proteomic signatures of good repro-
ducibility by optimizing the CWrel among multiple fea-
ture rankings and ensembling the most robust signa-
tures with the highest CWrel.

• POSREG optimized the generalizability of identified sig-
natures by identifying the feature subset with the high-
est AUC using an AUC-based golden section search strat-
egy.

• POSREG’s unique capacities were validated using mul-
tiple proteomic benchmarks. It is freely and publicly
accessible at: https://idrblab.org/posreg

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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