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Abstract 

Large-scale studies of single-cell sequencing and biological experiments have successfully revealed expression patterns that distinguish different 
cell types in tissues, emphasizing the importance of studying cellular heterogeneity and accurately annotating cell types. Analysis of gene 
expression profiles in these experiments provides two essential types of data for cell type annotation: annotated references and canonical 
markers. In this study, the first comprehensive database of single-cell transcriptomic annotation resource (CellS TAR) w as thus de v eloped. It 
is unique in (a) offering the comprehensive expertly annotated reference data for annotating hundreds of cell types for the first time and (b) 
enabling the collective consideration of reference data and marker genes by incorporating tens of thousands of markers. Given its unique 
features, CellS TAR is e xpected to at tract broad researc h interests from the tec hnological inno v ations in single-cell transcriptomics, the studies 
of cellular heterogeneity & dynamics, and so on. It is now publicly accessible without any login requirement at: https:// idrblab.org/ cellstar . 
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ntroduction 

ith the rapid advances in single-cell RNA sequencing
scRNA-seq), there has been a paradigm shift from ‘bulk’ to
single-cell’ resolution, highlighting the importance of cellular
eceived: August 15, 2023. Revised: September 12, 2023. Editorial Decision: Sep
The Author(s) 2023. Published by Oxford University Press on behalf of Nuclei

his is an Open Access article distributed under the terms of the Creative Comm
http: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commerci
riginal work is properly cited. For commercial re-use, please contact journals.pe
heterogeneity ( 1–7 ). This transition has led to extensive re-
search efforts ( > 16 600 papers published on PubMed in the
last five years) and a surge in large-scale unannotated datasets
(Figure 1 A), which necessitates accurate identification of cell
tember 27, 2023. Accepted: September 27, 2023 
c Acids Research. 
ons Attribution-NonCommercial License 
al re-use, distribution, and reproduction in any medium, provided the 
rmissions@oup.com 

https://doi.org/10.1093/nar/gkad874
https://orcid.org/0000-0002-8825-2573
https://orcid.org/0000-0002-1381-9571
https://orcid.org/0000-0001-7619-2975
https://orcid.org/0000-0001-9607-7026
https://orcid.org/0000-0001-6661-0002
https://idrblab.org/cellstar


D 860 Nucleic Acids Research , 2024, Vol. 52, Database issue 

Figure 1 . Sc hematic illustrations of the general w orkflo w of cell t ype annot ation and the features of annot ation-related prior dat a (annot ated reference 
datasets and marker genes) provided by CellSTAR. ( A ) Acquisition of unannotated data : the acquisition of large-scale unannotated datasets from 

single-cell sequencing studies necessitates accurate cell type annotation. ( B ) Cell type annotation : unlike the strategy that relies on traditional 
information of canonical marker genes that are specifically expressed in known cell types, the reference-based annotation strategy utilizes 
comprehensive gene expression profiles of expertly annotated reference datasets. Due to this feature, it has demonstrated superiority in capturing 
e xpression v ariability and co v erage, e xhibiting efficiency and reproducibility, and achie ving high resolution (described in Supplementary Table S1). 
Furthermore, the accuracy, reliability and consistency of both annotation strategies heavily depend on the availability, quality and applicability of 
annot ation dat a, which commonly requires a comprehensive dat abase that integrates curated reference and marker dat a to achie v e abundant a v ailability, 
high quality, and complementary applicability. ( C ) Analysis of annotated data : by enabling collective considerations of both types of data, CellSTAR is 
expected to facilitate accurate and robust identification of cell identities and various downstream analyses, such as studies of cellular heterogeneity and 
dynamics, disease research, drug disco v ery. 
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identity (i.e. cell type annotation) ( 8 ,9 ). 
Cell type annotation has become an essential step for down-

stream analysis in single-cell studies ( 10 ,11 ), which relies on
two types of annotation data: ‘reference datasets’ (expertly
annotated single-cell maps) and ‘marker genes’ (genes specifi-
cally expressed in known cell types) ( 12 ). Compared to the tra-
ditional marker-based annotation, the reference-based strat-
egy can fully leverage existing expertly annotated references,
which has demonstrated superior performance in identifying
complex cellular compositions and deciphering cell state tran-
sitions ( 12–15 ). Furthermore, the integrated application of
these two types of data has been advocated in many studies,
and its accuracy , reliability , and consistency heavily depend
on data comprehensiveness and quality ( 14 ,16 ) (Figure 1 B).
Therefore, the comprehensive annotation data of both refer-
ences and markers are urgently needed in current single-cell
transcriptomic studies. 

So far, several databases related to scRNA-seq cell type an-
notation have been constructed ( 17–22 ). Most of them fo-
cus on describing marker genes, such as CellMarker ( 17 ),
PCMDB ( 18 ), CancerSEA ( 19 ) and several others ( 20–22 ).
These databases have attracted extensive interest because they
bridge the gap between the availability of differentially ex- 
pressed genes (DEGs) and the delivery of canonical markers 
to users. However, none of these databases provides reference 
data. In other words, there is currently no existing database 
that provides strictly curated scRNA-seq reference data, let 
alone the systematic integration of corresponding cell mark- 
ers. All in all, it is highly demanded to construct a comprehen- 
sive scRNA-seq cell type annotation database that integrates 
both curated reference and marker data. 

Herein, a comprehensive database of s ingle- cell 
t ranscriptomic a nnotation r esource (named ‘CellSTAR’) 
is thus introduced. The latest version of CellSTAR (a) pro- 
vides expression profiles with valuable underlying annotated 

references collected from 515 projects and 1679 batches using 
14 sequencing techniques, and includes 889 distinct cell types 
identified by 107 annotation approaches across 18 species 
and 139 tissues, (b) collects canonical cell markers, which 

contain > 80 000 entries covering over 80% of the cell types 
identified in 76% of the reference data, (c) describes detailed 

annotation-related experimental metadata, which is valuable 
for revealing the impact of experimental factors on anno- 
tation and considering appropriate analytical approaches 
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hen utilizing the data and (d) offers various interactive
isualizations, enabling a holistic exploration of intricately
istributed cells and potential molecular drivers. Moreover,
pecies, tissues, cell types and corresponding markers are
tandardized based on the latest versions of Taxonomy ( 23 ),
beron ( 24 ), Cell Ontology ( 25 ) and Entrez Gene ( 26 ),

espectively. 
All in all, CellSTAR is unique in (a) offering the compre-

ensive expertly annotated reference data for annotating hun-
reds of cell types for the first time and (b) enabling the
ollective consideration of reference data and marker genes
y incorporating tens of thousands of markers. Given the
apid advances of AI in single-cell omics, our CellSTAR ( https:
/ idrblab.org/ cellstar ) is expected to have significant impacts
n single-cell transcriptomic analyses ( 27–31 ), such as studies
f cellular heterogeneity ( 32 ), developmental biology, disease
esearch and drug discovery ( 33 ,34 ) (Figure 1 C). 

actual content and data retrieval 

ystematic collection, curation and integration of 
nnotation data 

n this study, a multi-step collection and curation process was
roposed to obtain a diverse set of high-quality reference
atasets with reliable annotation information: (i) Comprehen-
ive literature review : a thorough literature review was con-
ucted in PubMed, focusing on scRNA-seq studies that pro-
ide well-characterized gene expression patterns for specific
ell types. Specific keyword combinations such as ‘scRNA-
eq + cell atlas’, ‘single cell RNA sequencing + reference data’
nd ‘single cell transcriptomics + reference data’ were used,
hich resulted in 10 426 relevant publications. (ii) Public

epository mining : to complement the literature-based search
trategy, additional data mining was carried out on public
atasets with underlying annotations in reputable reposito-
ies such as Gene Expression Omnibus (GEO) ( 35 ) and Single
ell Expression Atlas (SCEA) ( 36 ). By employing the afore-
entioned keywords in GEO, 25 906 entries were retrieved.
or SCEA, data were filtered based on experimental factors
sing the keyword ‘cell type’, resulting in 135 relevant experi-
ents. (iii) Rigorous inspection and verification : due to factors

uch as data size, complexity, protection regulations and or-
anizational barriers, sharing annotation information along
ith expression profiles can be challenging ( 37 ). Therefore,

igorous inspection and verification of the publications and
xperiments identified in the previous steps were conducted
o ensure the collection of reliable data. We carefully reviewed
he full texts of selected publications and cross-checked rele-
ant supplementary materials, ensuring that only publicly ac-
essible expression profiles associated with confidently con-
rmed annotations were included (such as those derived from
ell sorting, cellular mixing, cell classification, and identifica-
ion). Subsequently, we extracted comprehensive experimen-
al metadata and assigned them to corresponding entries. (iv)
ata deduplication and recording : to avoid duplication of en-

ries, experiment entries with identical experimental condi-
ions were merged. Detailed experimental metadata and batch
nformation were provided for each experiment entry. As a
esult, CellSTAR provided 515 research projects and 1679
xperimental batches sequenced by 14 techniques, contain-
ng 889 distinct cell types identified by 107 annotation ap-
roaches across 18 species and 139 tissues. Particularly, a to-
tal of 67 experiments conducted on disease samples (including
36 disease classes defined by WHO ICD-11) and 448 experi-
ments conducted on healthy samples were included. 

Given the significance of canonical markers in inferring cell
identities, CellSTAR incorporates marker data as a comple-
mentary resource to establish an integrated framework that
combines the strengths of both types of information. (i) Stan-
dardization and data alignment : the cell type annotations of
our reference datasets were standardized using the latest ver-
sion of Cell Ontology ( 25 ) to ensure consistent terminology
across different data sources and further align the reference
and marker data. (ii) Canonical mar k er s acquisition : expert-
validated cell markers were obtained from well-established re-
sources such as CellMarker ( 17 ), PanglaoDB ( 38 ), CancerSEA
( 19 ) and the CD Marker Handbook ( 22 ). In some cases, the
marker databases might not cover all the cell types present in
previously searched reference datasets. Therefore, to ensure
comprehensive mutual validation of both data types, we ex-
tensively supplemented missing marker information for un-
covered cell types by conducting a thorough literature re-
view on Google Scholar. Specifically, we used keyword com-
binations of marker(s) along with names of respective cell
type, species, and tissue. For example, (‘marker’ OR ‘signa-
ture’) AND (‘fat cell’ OR ‘adipocyte’ OR ‘adipose cell’) AND
(‘Mus musculus’ OR ‘mouse’) AND (‘kidney’). (iii) Expert re-
view and validation : moreover, biological researchers and ex-
perts participated in the review of candidate markers to ex-
tract clinically or experimentally validated marker informa-
tion, ensuring their specificity, relevance, and underlying bio-
logical insights. (iv) Combination for comprehensive informa-
tion : all records of markers derived from databases and pub-
lications were merged, resulting in > 80 000 entries covering
over 80% of the cell types identified in 76% of the reference
data. Through these systematic and rigorous steps of data col-
lection, curation, and integration, CellSTAR innovatively of-
fers a comprehensive and reliable framework that combines
well-characterized annotated references with well-established
canonical markers to improve cell type annotation. 

Data accessibility of annotated references with 

comprehensive metadata 

The success of reference-based annotation heavily depends on
the availability and selection of appropriate reference datasets
that exhibit sufficient similarity to the query dataset ( 37 ,39 ).
To address this challenge, CellSTAR provides users with sys-
tematically collected and curated reference datasets that were
previously scattered across publications, along with compre-
hensive annotation-related metadata to enable confident uti-
lization of the datasets ( 40 ,41 ). 

In the online database, users can retrieve experiments of in-
terest by searching for relevant keywords. Each query will gen-
erate a list of relevant experiments, and users can easily select
appropriate references based on the provided general informa-
tion and a word cloud map that illustrates the complex cellu-
lar landscape and the abundance of distinct cell populations
within the reference data. Furthermore, comprehensive meta-
data, batch information, and reference datasets for each exper-
iment are accessible. (a) Experimental metadata : this section
provides a comprehensive description of the studied samples,
including species and tissue names / synonyms, and specific dis-
ease under investigation. It also incorporates details about the
sequencing technology, data preprocessing protocols (quality

https://idrblab.org/cellstar
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control, normalization, transformation, data correction and
integration, feature selection and dimensionality reduction),
and experimental treatments such as reagent treatments, sur-
gical procedures, gene modifications, feeding regimens and
disease progression. The origin of the annotations (whether
obtained manually , automatically , through cellular sorting or
immunopanning) and corresponding annotation protocols are
also provided. Additionally, cross-links with well-established
databases such as NCBI Taxonomy ( 23 ), Uberon ( 24 ), GEO
( 35 ) and SCEA are available ( 36 ) (Figure 2 A). (b) Batch in-
formation : this section explicitly presents the original desig-
nation or label associated with each batch, accompanied by
relevant descriptions of their respective samples. By elucidat-
ing the distinctive characteristics and composition of different
batches, it offers valuable insights into identifying potential
batch effects, understanding the impact of batch-related vari-
ations on cell type composition, and considering appropriate
analytical approaches when utilizing the dataset ( 42 ,43 ) (Fig-
ure 2 B). (c) Similar experiments : although datasets are cate-
gorized into separate experiments based on distinct metadata
attributes (such as sample sources and experimental condi-
tions), it is essential to integrate and utilize these highly cor-
related reference datasets in order to enhance annotation ac-
curacy and ensure comprehensive annotation coverage ( 44–
46 ). Therefore, this section establishes connections among
datasets associated with the same literature or common re-
search project, which facilitates navigation through related
datasets while demonstrating consistency and comparability
in metadata across different experiments (Figure 2 C). (d) File
download : the online database provides two types of data that
collectively serve as ‘reference data’, including an annotation
reference file and corresponding expression profiling file(s).
The ‘annotation reference file’ is a csv file that establishes a
clear mapping between individual cells and their correspond-
ing annotated cell identities across all batches within the ex-
pression profiling file(s) (Figure 2 D). Within the annotation
reference file, two key columns are crucial for indicating cell
identities: ‘inferred_cell_type’ and ‘cell_ontology_class’. The
former is provided by the original data authors, which may
vary in terminologies and nomenclature conventions, while
the latter records standardized designations implemented by
us using established Cell Ontology to ensure consistency and
reliability. The ‘expression profiling file’ is a count matrix that
captures the raw expression counts for each gene in each single
cell, as speculated by the reviewer. All count matrices within
CellSTAR are raw count matrices without any normalization
or transformation. However, some have undergone quality
control by the original data providers to remove low-quality
data (e.g. experiment CSTA_000001), and we did not apply
any further data operations. In summary, CellSTAR facilitates
systematic connections between user queries and reference
datasets based on experimental metadata while effectively or-
ganizing resulting data for convenient access and download. 

Characterization of canonical mark er s and 

navigation to associated references 

With the inclusion of canonical markers, the online database
not only provides access to an extensive collection of an-
notated references but also offers valuable insights into the
molecular signatures of diverse cell types. The user-friendly
interface was carefully designed for intuitive navigation and
efficient querying of the integrated annotation data for spe-
cific cell types, comprising the following key sections: (a) Cell 
general information : this section presents an overview of each 

cell type, including its name and synonyms, comprehensive de- 
scriptions of its unique morphology, function, location and 

other distinctive features. Additionally, the immediate superi- 
ors or higher-level cell types to which the specific cell type be- 
longs are provided. To facilitate a deeper understanding of hi- 
erarchical relationships with various cell types, external links 
to the Cell Ontology Lookup Service of EMBL-EBI are pro- 
vided ( 47 ) (Figure 3 A); (b) Cell-related experiment(s) : in this 
section, users can access a comprehensive compilation of ref- 
erence data involving the specific cell type of interest. In addi- 
tion to general experimental metadata, and in-depth informa- 
tion can be accessed by following corresponding hyperlinks 
provided in the ‘Details’ column (Figure 3 B); (c) Cell-related 

canonical mar k er(s) : this section lists curated canonical cell 
markers of various species and tissues. For each marker, es- 
sential details which include marker name, gene symbol, gene 
type and the protein encoded by the marker gene are carefully 
documented. Moreover, direct access to relevant publications 
through provided hyperlinks is offered for thorough investi- 
gation into these markers (Figure 3 C). 

Visualizations for exploring cell populations and 

molecular signatures 

CellSTAR offers various interactive visualizations that facil- 
itate in-depth exploration of intricately distributed cells and 

potential molecular drivers. Thorough analysis was conducted 

on each expression profile, leading to the following visualiza- 
tions: (a) Visualization of annotated cell populations : The pie 
chart presents an overview of the relative abundance of di- 
verse cell populations within each reference dataset, provid- 
ing users with rapid insights into the distribution and compo- 
sition of cell populations ( 48 ). Meanwhile, the tSNE map in- 
tuitively represents intricate spatial relationships among clus- 
ters based on their gene expression profiles ( 49 ) (Figure 4 A).
(b) Heatmap of cell population abundance : this heatmap em- 
powers users to visually compare the distribution and variabil- 
ity of cell populations across different experimental batches,
thereby enabling the discovery of potential functional signif- 
icance associated with distinct cell types within each batch 

(Figure 4 B). (c) Heatmap of top genes : This heatmap vividly 
depicts the expression patterns of top DEGs across various cell 
populations, facilitating the identification of potential molecu- 
lar drivers underlying complex biological processes ( 50 ) (Fig- 
ure 4 C). Specifically, DEGs for each of the annotated cell types 
in a reference dataset were identified based on the Wilcoxon 

Rank Sum test. As recognized in the scientific community,
high-quality reference datasets hold significant value in de- 
ciphering expression patterns and serve as foundational re- 
sources for identifying molecular signatures. Moreover, it is 
essential to cross-validate markers across multiple datasets, es- 
pecially when data originate from different experimental con- 
ditions or technologies ( 51 ,52 ). This ensures mutual valida- 
tion and enhances the robustness and reliability of annotation 

outcomes. Therefore, DEGs derived from reference datasets 
are made available for users to compare these candidate mark- 
ers across datasets or with existing canonical marker informa- 
tion. Taking the reference dataset (CSTA_000192) sequenced 

by Microwell-seq in mouse liver as an example, 60% of cell 
types whose DEGs overlap with existing canonical markers by 
more than 50%, indicating its high quality and potential for 
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Figure 2. Detailed descriptions of annotation-related metadata and experimental batches for each curated reference dataset (using the CSTA_0 0 0 0 01 as 
an example). ( A ) The comprehensive experimental metadata includes descriptions of the studied samples (species and tissue names / synonyms, and 
specific disease under in v estigation), sequencing technology, data preprocessing protocols, experimental treatments, the origin of annotations, 
corresponding annotation protocols, and external links to other molecular biological databases. ( B ) The batch information explicitly elucidates the 
distinctive characteristics and compositions of different batches within the study. ( C ) This section establishes connections among datasets associated 
with the same literature or common research project, which facilitates navigation through related datasets while demonstrating consistency and 
comparability in metadata across different experiments. ( D ) Well-organized annotated references are a v ailable f or do wnload, establishing a clear 
mapping between individual cells and their corresponding annotated cell identities across all batches within the expression profiling file(s). Although this 
figure presents only a single batch and its associated expression profiling file due to space limitations, complete information can be accessed through 
the online database. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/D

1/D
859/7321991 by N

ational Science & Technology Library user on 08 January 2024



D 864 Nucleic Acids Research , 2024, Vol. 52, Database issue 

Figure 3. Characterizations of canonical cell markers and associated reference data for each cell type (using the endothelial cell as an example). ( A ) 
General information of the specific cell type includes cell name and synonyms, distinctive features (such as morphology, function, location), its 
hierarchical relationships with various cell types, and external links to the Cell Ontology Lookup Service of EMBL-EBI for through exploration. ( B ) In this 
section, an o v ervie w of all reference data in v olving the specific cell type of interest is presented, with in-depth information of each study accessible 
through hyperlinks provided in the ‘Details’ column. ( C ) A comprehensive list of canonical cell markers of various species and tissues are categorized. 
For each marker, essential details including marker name, gene symbol, gene type, and the protein encoded by the marker gene are carefully 
documented, and direct access to rele v ant publications are offered for further investigation. 
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Figure 4. Diverse visualizations offered by CellSTAR for exploration of cell populations and molecular signatures. ( A ) Visualization of annotated cell 
populations : the pie chart presents an o v ervie w of the relative abundance of diverse cell populations within each reference dataset, providing users with 
rapid insights into the distribution and composition of cell populations. Meanwhile, the tSNE map intuitively represents intricate spatial relationships 
among clusters based on their gene expression profiles. ( B ) Heatmap of cell population abundance : this heatmap empowers users to visually compare 
the distribution and variability of cell populations across different experimental batches, thereby discovering potential functional significance associated 
with distinct cell types within each batch. ( C ) Heatmap of top genes : this heatmap vividly depicts the expression patterns of top DEGs across various cell 
populations, facilitating the identification of potential molecular drivers underlying complex biological processes. 
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nnotation. In summary, CellST AR’ s powerful visualizations
ot only contribute to the identification of cell types, but also
old great promise in discovering potential biomarkers and
lucidating intricate molecular mechanisms. 

pplications of CellSTAR for comprehensive and 

obust annotation 

he term ‘reference data’ typically refers to the existing ex-
ertly annotated single-cell maps that may contain various
iological factors (e.g. age, sex, and disease condition) ( 12 ).
hen annotating query datasets, one preferred approach is to

eference annotated single-cell datasets that are relevant to the
pecific context (i.e. reference data, not limited to healthy or
isease experiments). Therefore, CellSTAR incorporated both
ypes of experiments in order to provide a comprehensive re-
ource for users. Healthy experiments serve as references for
 

understanding the typical cell types and their gene expres-
sion profiles within healthy organisms or tissues, which are
essential for establishing a foundational framework against
which to compare and annotate cell types across various ex-
perimental conditions. Meanwhile, there has been a shift in
focus towards comparative analyses across different diseases
or experimental conditions, as the number of samples per
study increases. Such comparative analyses are critical for
understanding disease pathogenesis, identifying biomarkers
and potential therapeutic targets. Thus, in some cases, re-
searchers may conduct experiments using samples obtained
from individuals with specific diseases or conditions. These
annotated datasets are valuable for annotating cell types in
query datasets acquired under similar conditions, charac-
terizing disease-specific cell types, identifying disease-specific
marker genes, and investigating the impact of diseases on
cellular landscape. Furthermore, these data allow for meta-
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analyses across multiple single-cell maps to clarify cell type
differences that correlate with disease severity and response
to various therapeutic treatments. 

Here, we present a comprehensive exploration of various
annotation applications of CellSTAR reference datasets and
its flexibility in selecting appropriate strategies for specific ap-
plication scenarios ( 46 ,53–58 ). CellSTAR allows for the asso-
ciation of gene expression profiles between reference datasets
and unknown cells in query datasets through similarity mea-
surement, data integration, or (semi-)supervised classification.
The most straightforward strategy is similarity measurement
(Figure 5 A), which has been implemented in tools such as
scmap ( 59 ), scMatch ( 60 ), CHETAH ( 61 ), CIPR ( 62 ) and clus-
tifyr ( 63 ). These tools focus on quantifying the similarity be-
tween gene expression profiles of reference and query datasets,
enabling the mapping of unknown cells to known cell types.
For the application scenario involving the integration of query
data with reference data (Figure 5 B), batch effects are an im-
portant concern as they can significantly impact cell type an-
notation based on integrated datasets. To deal with such in-
terference while preserving the biological signals of interest,
several tools have been proposed ( 42 ,64 ). For example, Har-
mony projects both query and reference data into a lower-
dimensional space followed by soft clustering to generate mul-
tiple clusters. Correction factors are then computed based on
cluster centroids and iteratively applied to minimize batch ef-
fects within the integrated dataset. This approach enables the
identification of clusters spanning both datasets and facilitates
transfer of reference labels to query cells within these clusters.
Although this approach supports the identification of distinct
cell types and gradients in cell state, it can be computation-
ally expensive ( 65 ). Despite existing tools of either similar-
ity measurement or data integration are based on ‘ a single ’
reference dataset, they allow the merging of ‘ multiple ’ refer-
ences to achieve comprehensive annotation. Ultimately, the
(semi-)supervised classification strategy (Figure 5 C) offers a
more valid alternative when ‘ sufficient ’ reference datasets with
meaningful features and cell identities are available. This ap-
proach effectively overcomes intrinsic experimental noise and
variability in multiple datasets ( 66–70 ). Overall, the diverse
reference data available in CellSTAR can be readily applied
to these annotation tools either directly or with minor adjust-
ments, depending on the availability of appropriate reference
datasets, the specific research being conducted, and the com-
putational and expertise resources available. 

Besides the discussed flexibility in utilizing reference data,
CellST AR’ s marker data can be used for expert manual anno-
tation as well as in automated annotation tools such as Cel-
lAssign ( 11 ), Garnett ( 70 ), ScType ( 51 ), scCATCH ( 22 ) and
CALLR ( 71 ). Moreover, further potential applications based
on the integrated considerations of reference and marker data
can be explored. A number of benchmarking studies have
demonstrated the complementary nature of these methods,
each possessing distinct advantages ( 14 ). Therefore, it is highly
recommended to combine multiple tools that integrate both
reference and marker data in practical applications. This ap-
proach establishes cross-validation and enables majority vot-
ing, which significantly enhances annotation accuracy ( 72 ,73 ).
By leveraging the synergy between reference and marker data,
CellSTAR holds the potential to advance its capabilities and
provide more accurate and comprehensive annotations. 
Standardization, access and retrieval of CellSTAR 

data 

Due to the inherent biases introduced during the assignment 
process, which involves the application of uncontrolled vocab- 
ularies for cell type labeling across different datasets, as well as 
the inconsistencies observed in canonical marker genes across 
various databases, the utilization of such resources can po- 
tentially lead to divergent annotation outcomes ( 74 ). In other 
words, to ensure reliable and consistent utilization of Cell- 
STAR data, it is essential to mitigate potential variations aris- 
ing from distinct terminologies and nomenclatures across dif- 
ferent sources. Therefore, careful data cleaning and system- 
atic standardization were conducted on the collected raw data.
The standardization process relied on the latest versions of the 
Taxonomy ( 23 ), Uberon ( 24 ), Cell Ontology ( 25 ), Entrez Gene 
( 26 ) and WHO ICD-11 for accurate alignment of species, tis- 
sues, cell types, cell markers and diseases respectively. 

Moreover, a user-friendly interface was thoughtfully de- 
signed to enable intuitive navigation, efficient retrieval, and 

convenient downloading of the data. The browsing function- 
ality of CellSTAR can greatly assist users in exploring ref- 
erence data and identifying experiments relevant to specific 
species or tissues. To further expedite the data exploration 

process, a quick search utility is integrated into CellSTAR, en- 
abling users to efficiently search through the entire annotation 

data. This can be achieved either through the main search in- 
terface or the pull-down menu options. On the ‘Download’ 
page, annotated reference datasets with experimental meta- 
data and resulting analysis data, as well as corresponding 
canonical cell markers are readily available. Specifically, to 

enhance user convenience and improve interoperability when 

utilizing reference datasets, well-organized expression profiles 
have been converted into universally accepted formats (CSV,
TSV and MTX) compatible with various single-cell annota- 
tion and analysis tools, including but not limited to SingleR 

( 15 ), scDeepSort ( 13 ), and harmony ( 65 ). The CellSTAR can 

be freely accessed by all users without any login requirements 
at https:// idrblab.org/ cellstar , and compatibility testing has 
been performed across popular web browsers including Mi- 
crosoft Edge, Google Chrome, Apple Safari and Mozilla Fire- 
fox. 

Conclusion and prospect 

In this study, we developed CellSTAR, a manually curated re- 
source that comprehensively integrates annotated references 
and canonical markers across diverse species. It is the first 
database to provide experiment-based reference data for an- 
notating hundreds of cell types. Such valuable data have 
demonstrated superior performance in identifying complex 

cellular compositions and deciphering cell state transitions 
compared to the traditional information of marker genes that 
are specifically expressed in known cell types. Moreover, tens 
of thousands of markers are also incorporated into CellSTAR 

to enable collective consideration of reference and marker 
data. Notably, various visualizations are provided to facilitate 
in-depth exploration of intricately distributed cells and po- 
tential molecular drivers based on thorough analysis of each 

expression profile. In summary, CellSTAR will be an informa- 
tive and valuable resource for researchers aiming to accelerate 

https://idrblab.org/cellstar
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Figure 5. Schematic depictions of three widely used annotation strategies that can be emplo y ed based on CellSTAR reference data. ( A ) Similarity 
measurement : it in v olv es quantifying the similarity between gene expression profiles of reference and query datasets, which facilitates the mapping of 
unknown cells or clusters to known cell types. ( B ) Data integration : by integrating the query dataset with a reference dataset, this strategy enables the 
identification of clusters that span both datasets and allows for transferring reference labels to query cells within these clusters. ( C ) (Semi-)supervised 
classification : it refers to the training of supervised or semi-supervised classifiers on the distribution of cell type labels, in terms of a defined set of 
features within annotated datasets. These trained models are subsequently utilized to assign labels to cells within unlabeled datasets based on their 
relative features. 
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heir investigations into distinct cell types, and pave the way
or groundbreaking discoveries in cell biology. 

As the field of single-cell transcriptomics rapidly advances,
eference atlases, new experimental technologies, annotation
trategies and tools are continuously being developed to im-
rove our ability to interpret, annotate and validate cellular
andscapes. Therefore, further extensions will be conducted in
he following aspects. First, reference datasets of more species
nd tissues, and an expanded repository of cell markers for
iverse cell types (particularly rare / transitive cell types), will
e collected and updated in the future version of CellSTAR
o provide more comprehensive information for users. Sec-
nd, analysis algorithms and tools will be integrated into Cell-
TAR to facilitate the extraction of meaningful insights from
omplex datasets. Third, contextual categorization of stud-
es involving multiple experimental conditions will be empha-
ized, as the focus of single-cell map interpretation is gradu-
lly shifting to comparisons across disease, age or other con-
itions. Finally, it is crucial to acknowledge the inherent lim-
tations of relying solely on reference datasets and marker
genes in the current version of CellSTAR, which was initially
designed to address the urgent demand for a comprehensive
and curated resource for cell type annotation using scRNA-
seq data. The challenge arises when attempting to annotate
homogeneous or closely related cell types or states, as they
often exhibit significant overlap in their expression patterns.
In other words, subtle distinctions between cell subtypes may
not be detectable at the transcriptional level alone and may re-
quire additional complementary genomic layers, such as epi-
genetic information ( 75 ,76 ) (e.g. single-cell assay for trans-
posase accessible-chromatin with high-throughput sequenc-
ing ( 77 ,78 ) and single-cell DNA methylome sequencing ( 79 )).
Moreover, continuous advancements in experimental tech-
nologies enable the measurement of multiple modalities at the
single-cell level ( 80 ), which are expected to achieve more accu-
rate and comprehensive cell type annotations and enhance our
understanding of complex multicellular systems. For instance,
spatial transcriptomics combines cell imaging and scRNA-seq
to capture spatial transcript patterns and cellular morphol-
ogy within a single experiment ( 81 ); cellular indexing of tran-
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scriptomes and epitopes by sequencing enables simultaneous
immunophenotyping of cell surface proteins and scRNA-seq
measurements. Overall, considering the valuable insights pro-
vided by these diverse data types, we expect expansions of
these data into our database and explorations of their integra-
tion in future versions based on evolving needs of the single-
cell research community ( 82 ). 
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