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The identification of protein–protein interaction (PPI) sites is essential in the research of protein function 
and the discovery of new drugs. So far, a variety of computational tools based on machine learning have 
been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low 
predictive accuracy or the limited scope of application. Specifically, some methods learned only global or 
local sequential features, leading to low predictive accuracy, while others achieved improved performance 
by extracting residue interactions from structures but were limited in their application scope for the serious 
dependence on precise structure information. There is an urgent need to develop a method that integrates 
comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel 
ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer 
and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns 
but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions 
from protein sequences with transformer and (b) further integrating global and local sequential features 
with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either 
superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern 
analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of 
learning residue interactions within the local structure of PPI sites using only sequence information. The 
web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis.

Introduction

Protein–protein interaction (PPI) plays a fundamental role in 
numerous cellular functional progresses [1–5]. PPI sites refer to 
the interfacial residues of proteins that are involved in these inter-
actions, and the identification of PPI sites is of utmost importance 
for unraveling the mysteries of cell processes and promoting the 
development of new drugs [6–8]. Experimental approaches for 
identifying PPI sites, including affinity purification coupled to 
mass spectrometry [9,10], coimmunoprecipitation [11,12] and 
2-hybrid screening [13,14], face challenges due to their intricate 
and time-consuming procedures [15–18]. Therefore, the devel-
opment of efficient computational methods to accelerate the iden-
tification of PPI sites is of vital importance [19–22].

So far, various computational methods have been developed 
for predicting PPI sites, which can be categorized into 2 main-
stream strategies [23]. The first strategy involves docking methods 

that predict pairwise interaction sites and rely on the structural 
information of both interacting proteins [24,25]. In contrast, the 
second strategy focuses on predicting putative interaction sites 
within individual isolated proteins, without requiring any knowl-
edge of the partner proteins [26]. The latter strategy holds great 
research importance since the structure of protein complex or the 
information on partner protein may not be available, and there-
fore has spawned a series of machine learning-based tools to 
perform partner-independent prediction of PPI sites in a more 
general paradigm [17]. These tools were built to learn and extract 
information that determines PPI, and were broadly categorized 
into sequence-based and structure-based according to the type 
of input data [27–29]. Some tools encode residues from the pri-
mary sequence and output the probability of being PPI sites [30], 
such as SPRINGS [31], SCRIBER [32], ProNA2020 [33], and 
DELPHI [34]. Others leverage structural information to identify 
PPI sites, such as secondary structure and residue contact map. 
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Prominent examples in this category include SPPIDER [28], 
DeepPPISP [22], EGRET [23], and GraphPPIS [35]. Recently, 
several methods utilized geometric deep learning to capture 
structural surface features for PPI sites prediction, including PInet 
[36], MaSIF-site [37], ScanNet [38], and PeSTo [39].

However, these methods suffer from the low predictive accu-
racy or the limited scope of application. Specifically, some 
methods had a main disadvantage of relatively low prediction 
accuracy because they only excelled at learning global or local 
contextual features from primary sequences [22,23,40,41], but 
failed to leverage local structural features whose information 
proves to be inextricably linked to PPI sites [23,35,42]. Others 
achieved improved performance by extracting residue interac-
tions from protein structures, particularly the long-range inter-
actions within local structures, but their application scope and 
generalization ability were extremely limited for their acute 
dependence on precise structure information, severe sensitivity 
to structural errors, and inappropriate use of protein confor-
mation for model training [35,43,44]. Therefore, there is an 
urgent need to develop a method that integrates comprehensive 
information to enable accurate identification of PPI sites in the 
largest scope of whole proteome [45–47].

Herein, a novel transformer-based ensemble method for PPI 
sites prediction, EnsemPPIS, was therefore proposed, which 
can capture not only global and local patterns but also residue 
interactions. EnsemPPIS consists of 2 base models, namely, 
TransformerPPIS and GatCNNPPIS. The transformer frame-
work in TransformerPPIS is equipped with the ability to learn 
global features and calculate attention weights between resi-
dues, making it possible to capture residue dependencies within 
local structures, while GatCNNPPIS is capable of learning local 
contextual features using the gated convolutional networks. 
EnsemPPIS was thoroughly evaluated on multiple PPI sites 
prediction tasks and exhibited either superior performance or 
broader applicability compared with various existing methods. 
Moreover, pattern analysis based on the interpretability of 
EnsemPPIS demonstrated that EnsemPPIS was fully capable 
of learning residue interactions using only primary sequences, 
thereby improving the performance of PPI sites prediction. A 
web server of EnsemPPIS was further established, which is 
freely available at http://idrblab.org/ensemppis. EnsemPPIS is 
applicable for proteome-wide profiling of PPI sites and expected 
to provide more insights into protein function research and 
drug discovery.

Results and Discussion

The ensemble framework of EnsemPPIS for 
predicting PPI sites
EnsemPPIS functions through 3 steps, including ProtBERT 
embedding, feature learning, and prediction, as illustrated in 
Fig. 1. Specifically, proteins are input into ProtBERT, a pre-
trained protein language model, to obtain the embeddings for 
residues [48]. Following the embedding, an ensemble learning 
framework is employed to effectively learn the underlying fea-
tures, which consists of 2 deep learning base models, namely, 
TransformerPPIS and GatCNNPPIS. These models leverage 
the embeddings obtained from ProtBERT for further analysis 
and prediction of PPI sites. TransformerPPIS can extract res-
idue interaction information and global features of proteins. 
To extract global features, the protein embeddings are fed into 
the encoder module. Simultaneously, each residue embedding 

undergoes a fully connected layer (FC) before being input into 
the decoder module alongside the global features. Within the 
decoder, the pairwise residue interactions are extracted using 
the self- attention mechanism of the transformer algorithm. 
The concrete architecture of TransformerPPIS is illustrated in 
Fig. 2, with a more detailed description presented in Materials 
and Methods. GatCNNPPIS can extract local features from 
protein embeddings. Specifically, GatCNNPPIS employs gated 
convolutional networks with residual connections to capture 
sequential motifs. In this approach, each residue is represented 
by its local contextual environment, which encompasses a total 
of 7 residues. Finally, the latent representations generated by 
TransformerPPIS and GatCNNPPIS are separately fed into the 
classifier, which consists of several FCs. The classifier utilizes 
these representations to output the probability score. The aver-
age probability score serves as the final probability of each 
residue being a potential PPI site. In summary, the major 
characteristic of EnsemPPIS is its ability to extract local and 
global features, as well as residue interaction information 
from ProtBERT-embedded proteins based on the ensemble 
learning framework.

Leading performance of EnsemPPIS in  
residue-level prediction
Previous studies have generated multiple datasets preserving 
experimentally validated PPI sites data, which have been widely 
utilized in developing computational tools, as displayed in Table 
S1. We took advantage of these valuable benchmark datasets to 
train and evaluate EnsemPPIS and made comprehensive com-
parisons with various existing methods. As a result, EnsemPPIS 
achieved leading performance in residue-level prediction on 
DeepPPISP task and DELPHI task.

(a) Performance evaluation on DeepPPISP task
EnsemPPIS, along with 12 other competing methods, was first 

evaluated and compared on the DeepPPISP task, as shown in Table 
1. Some of the results were obtained by reproducing the provided 
source code or utilizing the web server. Meanwhile, for certain 
methods that employed the same training and test data as the 
previous work DeepPPISP [22], the results were directly collected 
from that study to ensure consistency and comparability.

As a result, EnsemPPIS achieved the highest performance 
among all evaluated methods, achieving the MCC value of 0.277, 
AUPRC of 0.405, and F1 of 0.405. These 3 evaluation metrics 
are the most important ones in the imbalanced task of PPI sites 
prediction [22]. Specifically, when compared to the state-of-
the-art (SOTA) sequence-based method DELPHI, EnsemPPIS 
achieved a 5.3% improvement in F1, a 12.5% improvement in 
AUPRC, and a remarkable 17.4% improvement in MCC. More-
over, EnsemPPIS, using only sequence information, exhibited 
competitive performance even when compared to structure- 
based methods. In fact, EnsemPPIS slightly outperformed the 
most recent method, EGRET, in terms of F1 and MCC. The 
performance of the 2 base models, TransformerPPIS and 
GatCNNPPIS, was also evaluated. TransformerPPIS exhibited 
superior performance compared to most of the existing meth-
ods, showcasing its effectiveness in leveraging global features 
and residue interactions from the protein embeddings. On the 
other hand, GatCNNPPIS achieved strong performance, high-
lighting its ability to capture local contextual information. Both 
models demonstrated their efficacy and contributed to the over-
all success of the EnsemPPIS framework. In general, EnsemPPIS 
achieved the highest performance, indicating the effectiveness of 
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ensemble learning. Importantly, the PRE value of EnsemPPIS 
demonstrated an increase compared to that of the base models. 
This indicated that ensemble learning effectively contributed to 
controlling the false-positive rate to a certain extent.

EnsemPPIS achieves accurate prediction of PPI sites by 
integrating 2 separately trained base models. To demonstrate the 
effectiveness of ensemble learning, 2 variants of EnsemPPIS 
were constructed by combining the 2 base models into a single 
model for concurrent training, namely, EnsemPPIS-Va and 
EnsemPPIS-Vb, as shown in Fig. 3A and B. The detailed descrip-
tion of these 2 variants was provided in Materials and Methods. 
Both variants were also evaluated on the DeepPPISP task. Figure 
3C depicts the performance comparison between EnsemPPIS 
and its 2 variants. Obviously, EnsemPPIS demonstrated superior 
performance compared to EnsemPPIS-Va and EnsemPPIS-Vb 
across all metrics, particularly in terms of MCC and AUPRC. 
This suggested that the ensemble of the 2 separately trained base 
models was more effective compared to the approach of initially 
integrating the 2 base models and training them simultaneously.

Furthermore, we additionally assessed the performance of 
TransformerPPIS using different types of features or feature 
combinations, namely, ProtBERT, PSSM [49], DSSP [50], and 
One-hot [22], and the results were depicted in Fig. 3D and E. 
Consequently, BERT-based feature outperformed the tradi-
tional handcrafted features on MCC and AUROC, and the 
inclusion of ProtBERT feature significantly enhanced the pre-
dictive performance.

(b) Performance evaluation on DELPHI task
EnsemPPIS was further assessed on DELPHI task, as shown 

in Table 2. Due to the unavailability of structural information 
in the training data, the evaluation and comparison of methods 
in this task focused solely on those utilizing protein sequences. 
This allowed for a fair and direct assessment of the performance 
of sequence-based methods in predicting PPI sites. All results 
were calculated by using the source code or web server. As a 
result, EnsemPPIS proved to be the best method. Specifically, 
considerable improvements in F1, AUPRC, and MCC were 
achieved by 5.8%, 8.8%, and 4.7%, respectively, compared with 
the SOTA method DELPHI.

In summary, EnsemPPIS achieved remarkable improve-
ments in residue-level prediction of PPI sites using only 
protein sequences, outperforming all existing sequence-
based methods and comparable to even the most advanced 
structure- based methods. In this study, protein sequences 
were input into the pretrained language model ProtBERT 
to obtain the protein embeddings. Currently, there are some 
large protein language models that are able to generate inform-
ative latent vectors for residues [51], such as ESM-2 [52] 
and AminoBERT [53]. These models utilize advanced deep 
learning techniques and large-scale training data to capture 
intricate features and patterns within protein sequences. By 
comprehensively leveraging these large language models, it 
is indeed possible to further enhance the performance of 
EnsemPPIS.

Fig. 1. The ensemble learning framework of EnsemPPIS for predicting PPI sites. EnsemPPIS consists of 2 base models (TransformerPPIS and GatCNNPPIS) and functions 
through 3 steps, including ProtBERT embedding, feature learning and prediction. The average of probability scores output by the 2 base models is considered as the final 
probability of each residue as a potential PPI site. GLU, gated linear unit; RC, residual connection; FC, fully connected layer.
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Fig. 2. The deep learning architecture of the base model TransformerPPIS in EnsemPPIS. TransformerPPIS is mainly composed of 3 modules: the encoder, the decoder, and 
the classifier module. The sequence embedding obtained by ProtBERT is first input into the encoder module to extract global feature. Then, the global feature of the protein 
and the original embedding feature of a specific residue are both input into decoder module. The output of decoder is further passed into the classifier module to generate 
the probability score of a residue being a potential PPI site. GLU, gated linear unit; RC, residual connection; LN, layer normalization; FC, fully connected layer.

Table 1. Comparison of the predictive performance of our proposed methods and other state-of-the-art methods on DeepPPISP task. Deep-
PPISP, EGRET, IntPred, and SPPIDER use protein structural information. DELPHI, DLPred, ISIS, ProNA2020, PSIVER, RF_PPI, SCRIBER, and 
SPRINGS use protein sequences. TransformerPPIS, GatCNNPPIS, and EnsemPPIS are proposed in this study. All comparison methods are 
sorted alphabetically. The best results are shown in bold.

Method ACC PRE REC F1 AUROC AUPRC MCC

DeepPPISP a 0.655 0.303 0.577 0.397 0.671 0.320 0.206

DELPHI b 0.667 0.319 0.604 0.418 0.690 0.360 0.236

DLPred c 0.680 0.325 0.577 0.416 0.697 0.380 0.235

EGRET b 0.715 0.358 0.561 0.438 0.719 0.405 0.270

IntPred a 0.672 0.247 0.508 0.332 - - 0.165

ISIS a 0.622 0.211 0.362 0.267 - 0.240 0.097

ProNA2020 c 0.741 0.297 0.229 0.258 - - 0.106

PSIVER a 0.653 0.253 0.468 0.328 - 0.250 0.138

RF_PPI a 0.598 0.173 0.512 0.258 - 0.210 0.118

SCRIBER c 0.616 0.274 0.569 0.370 0.635 0.307 0.159

SPPIDER c 0.667 0.240 0.315 0.273 0.518 0.235 0.063

SPRINGS a 0.631 0.248 0.598 0.35 - 0.280 0.181

TransformerPPIS 0.681 0.332 0.604 0.429 0.711 0.389 0.253

GatCNNPPIS 0.633 0.306 0.698 0.421 0.698 0.369 0.239

EnsemPPIS 0.732 0.375 0.532 0.440 0.719 0.405 0.277

a Results reported by DeepPPISP. b Results obtained by reproducing the source code. ProNA2020 only makes binary predictions, and its AUROC and AUPRC 
are not calculated. c Results obtained by utilizing the web server.
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Broader applicability of EnsemPPIS using only 
primary sequences
EnsemPPIS was also evaluated and compared on the GraphPPIS 
task, and the results can be found in Table S2. Two additional 
methods using protein structures, namely, RGN and GraphPPIS, 
were reproduced and evaluated in this task. All results were cal-
culated using the source code or web server. Several methods 
compared on DeepPPISP task were not included in the GraphPPIS 
task for comparison, such as EGRET, because they were not 
provided with the training source code, thus preventing their 
retraining. As a result, EnsemPPIS once again outperformed all 

sequence-based methods and even achieved better performance 
than some structure-based approaches. Specifically, considerable 
improvements in F1, AUPRC, and MCC were achieved by 7.5%, 
10.3%, and 17.2%, respectively, compared with the best existing 
method using protein sequences. In addition, EnsemPPIS also 
surpassed 2 of the structure-based methods (SPPIDER and 
DeepPPISP) on F1, AUPRC, and MCC, but slightly lagged 
behind RGN and GraphPPIS.

Although EnsemPPIS is inferior to RGN and GraphPPIS in 
the GraphPPIS task and only comparable to EGRET in the 
DeepPPISP task, it promises to be an indispensable tool and is 

Fig. 3. Performance evaluation of EnsemPPIS, its variants, and the base model on the DeepPPISP task. (A) Architecture of variant EnsemPPIS-Va. The output of TransformerPPIS’s 
decoder and the output of GatCNNPPIS’s encoder were concatenated. The concatenated vector was then fed into multiple fully connected layers (FCs). (B) Architecture of variant 
EnsemPPIS-Vb. The output of TransformerPPIS’s decoder and the output of GatCNNPPIS’s encoder were separately passed through FCs. The resulting 2-dimensional vectors 
were concatenated and further processed through an FC. (C) Performance comparison of EnsemPPIS, EnsemPPIS-Va, and EnsemPPIS-Vb on various metrics. (D) Matthews 
correlation coefficient (MCC) of TransformerPPIS using different types of feature. (E) Area under the receiver operator characteristic curve (AUROC) of TransformerPPIS using 
different types of feature. The orange bars represent the performance without ProtBERT feature, and the yellow bars represent the performance with inclusion of ProtBERT feature.
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applicable for the whole proteome, because it is free from the 
inherent limitations of structure-based methods, namely, the 
acute dependence on precise protein structures and the improper 
use of protein conformation for model training.

The first limitation of structure-based methods is that the lack 
of experimentally validated protein structures severely limits their 
scope of application [43,54]. This limitation can be partially alle-
viated through the use of advanced protein structure prediction 
tools such as AlphaFold2 [55,56], RoseTTAFold [57], ESMFold 
[52], and RGN2 [53]. To investigate the impact of predicted pro-
tein structures on the performance of structure-based methods, 
we tested the performance of EGRET on Test70 dataset using the 
structures predicted by AlphaFold2. The results showed that the 
predictive accuracy on many proteins decreased to varying degrees 
while using predicted structures in place of real structures. As 
shown in Fig. 4A and B, the AlphaFold2 predictions were colored 
in orange and overlaid on the ground truth (green). AlphaFold2 
made accurate predictions for 2 proteins from RCSB Protein Data 
Bank (PDB) (PDB: 1svdM and PDB: 2f91A), with root mean 
square deviation (RMSD) of 0.446 and 0.380 Å, respectively 
[58]. Unfortunately, even with predicted structures of such high 
accuracy (RMSD value lower than 1.0 Å [55]), EGRET’s predic-
tive performance for both proteins declined significantly. As illus-
trated in Fig. 4C, the MCC of two proteins achieved by EGRET 
decreased by 0.033 and 0.044, respectively, when the predicted 
structures were used as input, indicating that structure-based 
methods are highly sensitive to slight structural errors. Notably, 
due to the identical protein sequence between real structure and 
predicted structure, EnsemPPIS was not affected by any struc-
tural errors in predicting PPI sites and outperformed EGRET on 
both proteins in terms of MCC (the red dashed line in Fig. 4C). 
Moreover, currently available protein structure prediction meth-
ods have some significant limitations, particularly regarding the 
prediction of structures for proteins with low homology or mis-
sense mutations [59–64]. These inaccurate protein structure pre-
dictions will seriously mislead the results of structure-based PPI 
sites prediction approaches.

Protein conformation undergoes changes when binding with 
a partner [44,65,66], and currently available structure-based 
PPI sites prediction tools were typically trained using protein 
complex structures, which limits their accuracy and generali-
zation ability when predicting PPI sites on unbound-form pro-
teins [35]. To elaborate the second limitation of structure-based 

methods, we compared the predictive performance of RGN and 
GraphPPIS on the same protein with different conformations 
(i.e., bound and unbound conformations). The human lympho-
cyte function-associated antigen 3 (UniProt: P19256) in Test60 
dataset was randomly selected as a case to conduct this analysis. 
As shown in Fig. 4D, the RMSD value between bound confor-
mation (PDB: 1qa9B) and unbound conformation (PDB: 1ci5A) 
was 1.161 Å, and the position of α-helix (or β-sheet) in the 2 
conformations was different, indicating that conformational 
changes indeed occurred during the binding process. As expected, 
both RGN and GraphPPIS presented an obvious decrease in 
MCC when predicting PPI sites on unbound conformation, as 
displayed in Fig. 4E. This suggested that models trained with 
complex structure information are limited in their robustness 
and generalization ability when making predictions on mono-
meric protein structures. PPI sites prediction methods that solely 
rely on protein sequences are not subject to the limitation of con-
formational changes because protein sequences remain consistent 
across different conformations. This offers an advantage in sce-
narios where accurate structural information is not readily avail-
able or when dealing with proteins with dynamic conformations. 
Specifically, EnsemPPIS exhibited noteworthy performance on 
both bound and unbound conformations, achieving the MCC 
value of 0.547 in both scenarios (as shown by the red dashed line 
in Fig. 4E). Importantly, this performance surpassed that of RGN 
and GraphPPIS specifically on the unbound conformation. In 
summary, our proposed EnsemPPIS overcomes the limitations 
associated with structure-based methods by solely relying on the 
information derived from primary protein sequences, and holds 
great advantages of broader applicability and stronger generali-
zation ability.

Superior performance of EnsemPPIS in  
protein-level prediction
(a) EnsemPPIS outperforms SOTA ensemble learning method

EnsemPPIS consistently demonstrated superior performance 
in predicting PPI sites at the residue level. However, it is worth 
noting that similar predictive methods are commonly employed 
for individual protein predictions in downstream research. There-
fore, we further assessed the performance of EnsemPPIS in 
protein-level prediction on the DeepPPISP task. We conducted 
a comparative analysis between our method and the SOTA ensem-
ble learning method DELPHI to evaluate their performance in 
predicting individual protein sequences from the Test70 dataset. 
The results of this comparison were depicted in Fig. 5. Specifically, 
DELPHI only learned local and global sequential features based 
on convolutional neural network (CNN) and recurrent neural 
network (RNN), respectively. As a result, EnsemPPIS achieved 
protein predictions with AUROC values exceeding 0.60, 0.70, 
and 0.80 at rates of 75.71%, 47.14%, and 15.71%, respectively 
(as shown in Fig. 5A), and it predicted proteins with PRE values 
exceeding 0.30, 0.40, and 0.50 at rates of 64.29%, 35.71%, and 
22.86%, respectively (as shown in Fig. 5B). EnsemPPIS outper-
formed DELPHI in terms of predicting a greater number of proteins 
with superior AUROC or PRE values across various intervals.

To elucidate the advantage of EnsemPPIS in predicting indi-
vidual proteins, 2 specific proteins (PDB: 1jtdB and PDB: 1b6cA) 
were randomly selected as cases to visualize the prediction results 
of TransformerPPIS, EnsemPPIS, and DELPHI. As shown in Fig. 
5C, the PPI sites on protein 1jtdB predicted by DELPHI exhibited 
a relatively dispersed pattern, whereas the PPI sites predicted by 

Table 2. Comparison of the predictive performance of EnsemP-
PIS and other state-of-the-art methods on DELPHI task. All com-
parison methods use only protein sequences and are sorted 
alphabetically. The best results are shown in bold.

Method ACC F1 AUROC AUPRC MCC

DELPHI a 0.848 0.364 0.746 0.326 0.278

DLPred b 0.835 0.308 0.724 0.272 0.214

SCRIBER b 0.838 0.322 0.719 0.275 0.230

SPRINGS a 0.811 0.211 0.608 0.178 0.103

EnsemPPIS 0.821 0.385 0.770 0.354 0.291

a Results obtained by reproducing the source code. b Results obtained by 
utilizing the web server.
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TransformerPPIS were more spatially concentrated, predomi-
nantly distributed on the same surface of the protein. This indi-
cated that TransformerPPIS might learn the local structure of 
protein based on its sequence and capture the information about 
residues close in space. Furthermore, by rotating the protein con-
formation, as shown at the bottom of Fig. 5C, it was obvious 
that EnsemPPIS further reduced the false-positive rate, thereby 
enhancing the predictive performance (MCC = 0.760). The visu-
alization of the prediction results for the protein 1b6cA was 
depicted in Fig. S1. Similar observations can be made, suggesting 
that EnsemPPIS attained the highest level of MCC (MCC = 
0.542) while effectively managing the false-positive rate. This was 
attributed to the integration of GatCNNPPIS base model, which 
was capable of learning local sequential features.

(b) EnsemPPIS is robust on sequences of different lengths
Existing sequence-based methods predominantly focused 

on local sequential features of residues, largely neglecting the 
sequence interdependency [22]. This oversight tended to com-
promise the performance of these methods when predicting 
long sequences due to the critical role of long-range residue 

interactions in the formation of PPI [23,35]. As reported by 
DeepPPISP, the protein length greatly impacted the predictive 
performance and its performance significantly deteriorated 
when predicting longer sequences [22].

Therefore, we also evaluated the predictive performance of 
EnsemPPIS on sequences of varying lengths in the Test70 data-
set. All the 70 sequences were grouped into 3 categories, 
namely, short length (less than 100 residues), medium length 
(100 to 200 residues), and long length (more than 200 residues). 
The number of sequences of short length, medium length, and 
long length was 18, 32, and 20, respectively. We evaluated 
EnsemPPIS on different lengths in both residue-level and 
protein-level prediction tasks. As illustrated in Fig. 6A, at the 
residue level, EnsemPPIS exhibited similar AUROCs in pre-
dicting PPI sites from sequences of varying lengths. In addition, 
Fig. 6B displays the distributions of each sequence AUROCs 
achieved by EnsemPPIS in predicting proteins from different 
length categories at the protein level. EnsemPPIS maintained 
consistent predictive performance across proteins of varying 
lengths (P > 0.05) according to the Mann–Whitney U test [67]. 

Fig. 4. The impact of predicted structures and conformational changes on the performance of structure-based methods. (A) Real structure of the protein (PDB: 1svdM) and 
structure predicted by AlphaFold2. (B) Real structure of the protein (PDB: 2f91A) and structure predicted by AlphaFold2. The AlphaFold2 predictions are colored in orange 
and overlaid on the ground truth (green). (C) Performance of EnsemPPIS and EGRET on 1svdM and 2f91A using real structures and predicted structures. Green bars represent 
the MCC values of EGRET using the real structures, and orange bars represent the MCC values of EGRET using the predicted structures. The red dashed lines denote the MCC 
values of EnsemPPIS using only primary sequences. (D) Bound (PDB: 1qa9B) and unbound conformations (PDB: 1ci5A) of the same protein (UniProt: P19256). The bound 
conformation is colored in green and overlaid on the unbound conformation (orange). (E) Performance of EnsemPPIS, GraphPPIS, and RGN using the bound and unbound 
conformations. Green bars represent the MCC values of GraphPPIS and RGN using the bound conformation, and orange bars represent the MCC values using the unbound 
conformation. The red dashed line denotes the MCC value of EnsemPPIS using only primary sequence.

D
ow

nloaded from
 https://spj.science.org at Z

hejiang U
niversity on O

ctober 04, 2023

https://doi.org/10.34133/research.0240


Mou et al. 2023 | https://doi.org/10.34133/research.0240 8

The results indicated the robustness of EnsemPPIS in predict-
ing proteins of different lengths, which might be attributed to 
the ability of TransformerPPIS in capturing long-range res-
idue interactions from sequences.

Pattern analysis based on the interpretability  
of EnsemPPIS
The black box nature of deep learning methods calls for careful 
investigation of interpretability [68–70]. Owing to the imple-
mentation of the self-attention mechanism, the TransformerPPIS 

base model of EnsemPPIS exhibited commendable interpreta-
bility. Inspired by EGRET [23], the residue PHE-74 on the PDB 
protein 1jtdB was selected for the in-depth pattern analysis 
based on the interpretability of TransformerPPIS. We used the 
Spearman rank-order correlation [23] to calculate the correla-
tion coefficient between the attention scores and predicted labels 
of residues within different distance ranges. As shown in Table 
S3, within the range of 5, 6, and 8 Å, the attention scores assigned 
to residues consistently exhibited a significant positive correla-
tion with the predicted labels (all P < 0.05). In the case of the 

Fig. 5. The comparison of EnsemPPIS and DELPHI in protein-level prediction on the Test70 dataset. (A) AUROC comparison between EnsemPPIS and DELPHI. (B) PRE comparison 
between EnsemPPIS and DELPHI. DELPHI is the current state-of-the-art ensemble method for the prediction of PPI sites using protein sequences. The scatter plot shows 
the performance comparison between EnsemPPIS and DELPHI, where each scatter represents a protein sequence in the Test70 dataset. The proportions of proteins across 
different intervals of AUROC and PRE are noted in the table. (C) Visualization of the prediction results achieved by TransformerPPIS, EnsemPPIS, and DELPHI for a specific 
protein (PDB: 1jtdB). PPI sites are shown in purple, and non-PPI sites are shown in gray.
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8-Å range, the correlation coefficient (r) was calculated to be 
0.697, with a corresponding P value of 2.71 × 10−5. To gain 
further insights, we divided the residues within this range into 
2 groups based on either the median of the attention scores or 
the predicted labels. This division allowed us to visualize the 
distribution of residues and examine their characteristics. As 
depicted in Fig. 7A and B, within the range of 8 Å, residues 
predicted as PPI sites (purple residues in Fig. 7A) significantly 
overlapped with those with higher attention scores (green res-
idues in Fig. 7B). Figure 7C reveals that residues predicted as 
PPI sites had notably higher attention scores than those pre-
dicted as non-PPI sites (P = 1.25 × 10−4) according to the 
Mann–Whitney U test.

PPI sites are relatively aggregated in protein structures, and 
local structural features play a crucial role in the formation of 
PPI. This implies that the interactions among residues within 
local structures play a crucial role in predicting PPI sites, and 
therefore, structure-based methods conduct the prediction by 
learning the features from spatially proximate amino acids [35]. 
However, spatially close residues may be distant in sequence. 
This poses a challenge for existing sequence-based methods, 
as they primarily emphasize the local sequential features of PPI 
sites. Consequently, capturing long-range residue interactions 
becomes difficult within the framework of these methods. In 
this study, the TransformerPPIS module was able to extract 
residue interactions including long-range interactions based 
on primary sequences. Again, take the residue PHE-74 as an 
example, its surrounding residues within the 8-Å range can be 
divided into 2 groups according to their distances to PHE-74 
or attention scores. Specifically, we first defined the residue 
distance based on the average distance of all atoms between 2 
residues. A total of 15 residues with distance less than or equal 
to the median value were grouped into “Close Residues,” while 
the remaining 14 residues were grouped into “Distant Residues.” 

The Mann–Whitney U test was then employed to examine 
the significant difference of the attention scores between these 
2 groups. As illustrated in Fig. 7D, the P value was 0.0386, 
indicating that the attention scores of “Close Residues” were 
significantly higher than those of “Distant Residues.” Similarly, 
these residues were classified into another 2 groups, namely, 
“High Attention Score” and “Low Attention Score,” based on 
the median of their attention scores. As shown in Fig. 7E, the 
P value was 0.0351, which implied that residues with higher 
attention scores were spatially closer in local structure, but 
might be far apart in sequence. This pattern analysis suggested 
that residues closer in local space contributed more to the 
formation of PPI sites, which corroborated the fact that res-
idues closer in space interact more significantly [71].

In summary, these findings highlighted that the Transformer-
PPIS base model within EnsemPPIS is fully capable of learning 
residue interactions, particularly the long-range interactions within 
the local structure of PPI sites using only primary sequences. This 
capability allows the model to extract meaningful connections 
between protein sequences and structures, ultimately leading to 
improved performance in predicting PPI sites.

Availability of EnsemPPIS web server
A web server that implements EnsemPPIS was constructed in 
this study, which is convenient for researchers to apply our pro-
posed PPI sites prediction method. The EnsemPPIS server was 
deployed on a Linux server of an Intel Xeon Gold 6149 3.10GHz 
CPU with 8 cores and 64 GB of memory based on the Python 
web framework of Django. As an open online platform, all users 
could freely access it through popular web browsers, including 
Google Chrome, Mozilla Firefox, Safari, and Internet Explorer 
10 (or later).

EnsemPPIS requires only the FASTA-formatted protein 
sequences as input, and users should set a project name to 

Fig. 6. Performance evaluation of EnsemPPIS on different sequence lengths in both residue-level and protein-level prediction tasks on the Test70 dataset. (A) Receiver operator 
characteristic curve (ROC) and AUROC of EnsemPPIS at the residue level for different sequence lengths. The yellow, green, and blue curves represent the ROC of sequences 
with short length (1 to 100 residues), medium length (100 to 200 residues), and long length (>200 residues), respectively. (B) Distributions of each sequence AUROC achieved 
by EnsemPPIS at the protein level under different length categories. The box bounds the interquartile range divided by the median, with whiskers extending to 1.5 times the 
interquartile range. Each red star represents the mean. Each violin plot illustrates the kernel probability density, where the shaded area represents the proportion of the samples 
located there. The Mann–Whitney U test is used to perform the statistical analysis and calculate P values, and all P values are 2-sided.
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associate their PPI sites prediction task. After successful submission, 
the information necessary to schedule the task would be placed into 
a MySQL database. Users could find their submitted project dis-
played on the “Queue” page of the web server. Clicking on the cor-
responding task information bar will redirect users to the program 
processing page, which offers 2 key functions: (a) encoding the 
input protein sequences using the pretrained ProtBERT and pro-
viding a downloadable pickle file containing the embedding vectors; 
(b) identifying potential PPI sites on all protein sequences and 
making a downloadable text file containing the prediction results. 
EnsemPPIS is freely available at http://idrblab.org/ensemppis.

Conclusion
In this study, to improve the accuracy of PPI sites prediction 
and expand the application scope, a novel transformer-based 

ensemble learning method for PPI sites prediction, EnsemPPIS, 
was proposed, which incorporated 2 base models, namely, 
TransformerPPIS and GatCNNPPIS. EnsemPPIS was designed 
to extract residue interactions by leveraging the transformer 
and integrate global and local sequential features through 
ensemble learning. EnsemPPIS exhibited leading performance 
across multiple tasks, surpassing all existing sequence-based 
prediction methods and demonstrating its broader applicabil-
ity in comparison to structure-based methods. Additionally, 
EnsemPPIS exhibited superior and robust performance in 
both residue-level and protein-level prediction tasks. Moreover, 
pattern analysis based on the interpretability of EnsemPPIS 
revealed its ability to learn residue interactions directly from 
protein sequences. EnsemPPIS is expected to facilitate in-depth 
understanding of molecular biology and advance research of 
drug discovery.

Fig. 7. Attention analysis of residues within the 8 Å of the PPI site PHE-74 on a specific protein (PDB: 1jtdB) based on the predicted labels and the spatial distances to PHE-74. 
(A) Visualization of residue distribution based on their predicted labels. The predicted PPI sites are denoted in purple, and the predicted non-PPI sites are denoted in blue. 
(B) Visualization of residue distribution based on their attention scores. All the residues are divided into 2 groups according to the median of the attention scores. Residues 
with higher attention scores are shown in green, while those with lower attention scores are shown in blue. (C) Boxplot of attention scores for residues predicted as PPI sites 
and non-PPI sites. (D) Boxplot of attention scores for close residues and distant resides. Residues with distance less than or equal to the median value are labeled as “Close 
Residues,” and the remaining residues are labeled as “Distant Residues.” (E) Boxplot of residue distances for residues with high attention score and with low attention scores. 
Residues with attention score higher than or equal to the median value are categorized into “High Attention Score,” and the remaining residues are categorized into “Low 
Attention Score.” The box bounds the interquartile range divided by the median, with whiskers extending to 1.5 times the interquartile range. Each red star represents the mean 
value. The Mann–Whitney U test is used to perform the statistical analysis and calculate the P value.
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Materials and Methods

Benchmark datasets and evaluation metrics
In this study, the performance of our proposed EnsemPPIS 
was comprehensively assessed on 3 PPI sites prediction tasks, 
including DeepPPISP task [22], GraphPPIS task [35], and 
DELPHI task [34]. The basic information about the datasets 
used in the 3 tasks is described below, and Table S1 provides 
the statistics of these datasets.

(a) DeepPPISP task
The Train352 and Test70 datasets used in the DeepPPISP task were 
obtained from DeepPPISP [22]. The DeepPPISP dataset was gen-
erated by combining 3 widely used benchmark datasets, namely, 
Dset_186 [72], Dset_72 [72], and PDBset_164 [22], each collected 
from the PDB database [73] and built through a data filtering 
process involving 6 steps [72]. In total, there were 422 protein 
sequences in the DeepPPISP dataset, each with the resolution less 
than 3.0 Å and sequence homology lower than 25%. A surface 
amino acid was defined as a PPI site if its absolute solvent acces-
sibility decreases by at least 1.0 Å2 upon protein binding [74]. For 
a fair comparison, we used the same data splitting scheme as 
DeepPPISP [22]. Thus, the training dataset Train352 contained 
352 protein sequences and the independent test dataset Test70 was 
composed of 70 protein sequences. A subset of Train352 with 50 
hold-out proteins is further randomly selected to form the vali-
dation dataset. As a result, there were 302 proteins in the training 
dataset, 50 proteins in the validation dataset, and 70 proteins in 
the test dataset.

(b) GraphPPIS task
The Train335 and Test60 datasets used in the GraphPPIS task were 
originally constructed by GraphPPIS and were also obtained by 
integrating the 3 datasets mentioned above (Dset_186, Dset_72, 
and PDBset_164) [35]. After the fusion of 3 benchmark datasets, 
BLASTClust [75] was further applied to remove protein sequences 
with similarities over 25%, leaving 395 nonredundant proteins. 
Subsequently, 335 proteins were randomly picked as the training 
data (Train335), and the remaining 60 proteins were used as the 
independent test data (Test60). To ensure a fair comparison, the 
Train335 and Test60 datasets used in this study were consistent 
with those used by GraphPPIS.

(c) DELPHI task
The Train9982 and Test355 datasets in DELPHI task were col-
lected by DELPHI, a recent research of PPI sites prediction using 
sequences [34]. The Test355 dataset was a subset of Dset_448 
dataset [32], which was built based on the BioLip database [76] 
and consisted of 448 nonredundant proteins with pairwise sim-
ilarities lower than 25%. In the Dset_448 dataset, the interaction 
sites in a protein complex were defined as the residues to which 
2 atoms belonged, based on a distance criterion. Specifically, if 
the distance between 2 atoms from different chains was found 
to be less than 0.5 Å plus the sum of their Van der Waals radii, 
these residues were identified as interacting sites. To ensure the 
comparability with another competing method named DLPred 
[77], the developers of DELPHI removed 93 proteins sharing 
similarities above 40% with any sequences in DLPred’s training 
dataset, and then constructed the Test355 dataset. To obtain the 
Train9982 dataset, the developers collected a large dataset from 
a previous study [78] and used PSI-CD-HIT [79] to remove 

sequences sharing similarities over 25% with any sequences 
in the Test355, followed by the removal of sequences with simi-
larities above 25% among the remaining proteins. Among 9,982 
sequences in the Train9982 dataset, 1,110 sequences were ran-
domly selected to compose the validation dataset and the 
remaining sequences were utilized to train the model. It is impor-
tant to note that the Train9982 dataset cannot be applied directly 
to train structure-based PPI sites prediction methods for the lack 
of structural information. Therefore, several methods using only 
sequences were evaluated in this task.

The prediction of PPI sites is essentially a binary classification 
task. In this study, the interaction sites were taken as positive 
samples and non-interaction sites as negative samples. To fully 
evaluate the performance of EnsemPPIS and other competing 
methods, 7 widely used evaluation metrics were adopted in this 
study, including accuracy (ACC), precision (PRE), recall (REC), 
F1-score (F1), Matthews correlation coefficient (MCC), area 
under the receiver operator characteristic curve (AUROC), and 
area under the precision–recall curve (AUPRC). All metrics were 
calculated using the Scikit-learn package [80], and the formulas 
for computing these metrics were provided in Supplementary 
Methods. Serious data imbalance is reported to be a significant 
characteristic of PPI sites datasets, making MCC, F1, and AUPRC 
the most important and comprehensive indicators as they can 
emphasize more on the minority class [22,81,82].

Deep learning architecture of EnsemPPIS
To convert protein sequences into embeddings, the pretrained 
protein language model, ProtBERT, was used to generate an 
L × 1,024 matrix for each protein sequence, where L is the 
sequence length and each amino acid is represented by a 1,024 
embedding vector. ProtBERT is a BERT model pretrained on 
UniRef100 through self-supervised learning, which can capture 
biophysical features of protein sequences [48,82,83]. The embed-
dings of proteins were further passed to the 2 base models of 
EnsemPPIS, namely, TransformerPPIS and GatCNNPPIS. Inspired 
by the great ability of transformer in extracting sequence features, 
the novel TransformerPPIS was proposed for predicting PPI 
sites using the modified transformer. The architecture of Trans-
formerPPIS, as shown in Fig. 2, consists of 3 modules: the encoder, 
the decoder, and the classifier module.

(a) Encoder module
In contrast to the original transformer framework, the encoder 
of TransformerPPIS uses a gated convolutional network with 
Conv1D and gated linear unit in place of the self-attention layers 
[84]. Conv1D mainly captures the contextual representation of 
residues with local biases and learns the global protein features 
by assembling local features of all residues. The gated linear unit 
can enhance the network's capacity to process nonlinear infor-
mation and extract more informative representations from pro-
teins. The sequence embedding of a protein is first converted 
into an L × 64 matrix using the FC and then fed into the gated 
convolutional network. The hidden layers h0, …, hl in the gated 
convolutional network are computed as Eq. 1:

where X ∈ ℝn×m1 is the input of layer hl; W1 ∈ ℝk×m1×m2, 
W2 ∈ ℝk×m1×m2, b1 ∈ ℝm2, and b2 ∈ ℝm2 are trainable parameters; 
l is the number of encoder layers; n is the length of the sequence; 

(1)hl(X)=
(

X ∗W1+b1
)

⊗𝜎
(

X ∗W2+b2
)
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m1 and m2 are the dimension of input and hidden features of 
the gated convolutional network, respectively; k is the kernel 
size of Conv1D; σ is the sigmoid function; and ⨂ represents 
the element-wise product between matrices [84]. In this study, 
l is 3, m1 is 64, m2 is 128, and k is 7. The encoder module adopts 
residual connection and layer normalization to solve the overs-
moothing problem [85]. The output of encoder, an L × 64 
matrix, is the final representation of a protein.

(b) Decoder module
The decoder module of TransformerPPIS is specifically designed 
to learn and capture residue interactions within protein sequences. 
The input of decoder module contains 2 parts: the global feature 
of the protein output by the encoder module and the original 
embedding of a specific residue obtained by ProtBERT. The 
decoder module mainly consists of multi-head self-attention layers 
and feedforward layers. The multi-head self-attention layer extracts 
the interactions between the specific residue and other residues, 
which takes 3 inputs: the queries, Q; the keys, K; and the values, V 
[86,87]. TransformerPPIS regards the residue embedding as Q and 
the global protein feature as K and V, and calculates the attention 
weight using Q and K. The calculation formula is as follows:

where dk is a scaling factor depending on the dimension of the 
hidden layer. The mask operation in the original transformer 
framework is modified in the decoder module to ensure that 
the complete sequence information is accessible. Accurately 
identifying PPI sites necessitates careful attention to the features 
of the local structure surrounding these sites [40]. However, res-
idues that are spatially close may be far apart in sequence due 
to the intricate folding patterns and 3-dimensional arrangement 
of protein structures. The self-attention mechanism employed 
in TransformerPPIS empowers the model to effectively capture 
the interactions between remote residues in a protein sequence. 
Another major component of decoder module is the feedfor-
ward layer, which improves the expressiveness of features by 
nonlinear transformation [88]. After each self-attention layer 
and feedforward layer, the residual connection and layer nor-
malization are used.

(c) Classifier module
The output of decoder module is the interaction feature between 
the specific residue and the global protein sequence. The interac-
tion feature vector is further fed to the classifier module, which is 
composed of 3 FCs and the ReLU activation function [89]. Finally, 
the probability of a residue being a PPI site is calculated by the 
softmax function.

The GatCNNPPIS base model presented here can be viewed 
as a simplified version of TransformerPPIS, consisting solely of 
the encoder and the classifier modules. In the output of the 
encoder module (the L × 64 matrix), each vector represents the 
local contextual feature of a particular residue. GatCNNPPIS 
takes this vector as input and directly feeds it into the classifier 
module, which outputs the probability of the corresponding 
residue being an interaction site.

Model training and hyperparameter tuning
The classification of PPI sites poses a challenge due to the inherent 
imbalance in the dataset. After the softmax function normalized 

the output of the network into the probability over the 2 classes 
(interaction site and non-interaction site), the weighted cross- 
entropy loss function was adopted to compute the loss values of 
samples, which were subsequently used to calculate the gradient 
of parameter update in the backward propagation process [90]. 
The weighted cross-entropy loss function assigned different class 
weights to positive and negative samples, allowing the model to 
prioritize the minority class and allocate more attention to its pre-
dictions. During model training, the ratio between the weights 
of positive and negative samples was determined based on the 
model’s performance on the validation dataset. Specifically, in the 
DeepPPISP task and GraphPPIS task, the weight ratio was set to 
5:1, while in the DELPHI task, it was set to 3:1. The LookAhead 
optimizer and RAdam optimizer were used during the training 
process [91]. In each PPI sites prediction task, the EnsemPPIS 
used the same training scheme as that of the competing method 
[22,34,35]. Specifically, in the DeepPPISP task and DELPHI task, 
the training dataset was used to train EnsemPPIS, and the valida-
tion dataset was used to evaluate the predictive performance and 
optimize the hyperparameters, followed by the assessment and 
report of the performance of the best model on the independent 
test dataset. In the GraphPPIS task, the 5-fold cross-validation was 
performed on the training dataset to avoid the influence of random 
errors, that is, all proteins in the Train335 dataset were randomly 
divided into 5 folds. Among these 5 folds, 4 folds were utilized to 
train EnsemPPIS and the remaining fold served as the validation 
dataset to evaluate the model. This procedure was repeated 5 times, 
with each fold serving as the validation dataset. The average of the 
5 evaluation results was then calculated to obtain the overall eval-
uation result. Based on this result, the best hyperparameters were 
selected. When the hyperparameters were determined, the final 
model was trained using all training data and evaluated on the 
independent test dataset. The early stopping strategy was applied 
to reduce overfitting and training cost [92–94]. In order to facilitate 
the convergence of training and improve the capacity of general-
ization, regularization methods including dropout and weight 
decay were used during training EnsemPPIS [95–97].

As an ensemble learning framework, the 2 base models of 
EnsemPPIS (TransformerPPIS and GatCNNPPIS) were sepa-
rately trained using the same training procedure. To optimize 
EnsemPPIS, we selected the optimal combinations of base 
models [98]. After the completion of model training, the 2 
saved models were loaded for individual prediction of PPI sites. 
In addition, we constructed 2 variants of EnsemPPIS to eval-
uate the outcomes achieved by combining the 2 base models 
into a single model for concurrent training. The architectures 
of the 2 variants were depicted in Fig. 3A and B. Specifically, 
in the first variant of EnsemPPIS (EnsemPPIS-Va), the output 
of TransformerPPIS’s decoder and the output of GatCNNPPIS’s 
encoder were concatenated. The concatenated vector was then 
fed into multiple FCs to obtain the probability of being PPI 
site. In the second variant (EnsemPPIS-Vb), the output of 
TransformerPPIS’s decoder and the output of GatCNNPPIS’s 
encoder were separately passed through 3 FCs. The resulting 
2-dimensional vectors were then concatenated, and the con-
catenated 4-dimensional vector was further processed through 
an FC to obtain the predicted probability. The output of each 
variant was utilized to calculate the loss for jointly updating 
the parameters of the 2 base models.

Three most influential hyperparameters (batch size, learning 
rate, and dropout rate) were tuned according to the predictive 
performance on the validation dataset. As a result, the optimal 

(2)attention(Q,K ,V ) = softmax

�

QKT

√
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combination of the above 3 hyperparameters was decided 
(batch size = 128, learning rate = 0.0005, dropout rate = 0.1). 
All the hyperparameter settings of EnsemPPIS were summa-
rized in Table S4. EnsemPPIS was implemented with Pytorch 
1.2.0 (http://pytorch.org/) and supported distributed training 
[99]. All scripts were written by Python 3.7.11, and all models 
were developed on the computer with Intel Xeon Gold 6132 
CPU @ 2.60GHz, NVIDIA Tesla P100 16GB GPU and 263GB 
RAM on CentOS Linux release 7.9.2009 (Core).

A variety of methods compared with EnsemPPIS
A comprehensive review on the previously published tools for 
PPI sites prediction was conducted in this study, which were sys-
tematically compared with our proposed EnsemPPIS, as shown 
in Table S5. These methods can be grouped into sequence-based 
and structure-based depending on whether the protein structural 
information is used. Sequence-based methods include ISIS 
[100], PSIVER [72], SPRINGS [31], RF_PPI [27], SCRIBER [32], 
DELPHI [34], ProNA2020 [33], and DLPred [77]. SCRIBER used 
a 2-layer architecture to perform partner type-specific prediction 
of protein-binding residues [32]. ProNA2020 utilized the com-
bination of homology-based inference and machine learning 
methods to predict protein-macromolecular binding residues 
using only protein sequences [33]. DELPHI was the SOTA 
sequence-based method that used 12 feature groups to encode 
proteins, and incorporated CNN and RNN with the ensemble 
learning strategy to enhance its predictive performance [34]. 
Structure-based methods include SPPIDER [28], IntPred [21], 
DeepPPISP [22], EGRET [23], GraphPPIS [35], and RGN [40]. 
DeepPPISP proposed an end to end deep learning model, which 
used CNN to combine local contextual and global features for 
PPI sites prediction [22]. EGRET constructed an edge aggregated 
graph attention network to effectively leverage protein structural 
information [23]. GraphPPIS employed evolutionary information 
and structural properties of amino acids to train the deep convo-
lutional network for the prediction of PPI sites [35]. RGN applied 
PSSM, hidden Markov model, hydrogen bond estimation algo-
rithm, and ProtBERT for node representation and constructed a 
residue-based graph attention and convolutional network [40].
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