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Abstract

Doublets formed during single-cell RNA sequencing (scRNA-seq) severely affect downstream studies, such as differentially expressed
gene analysis and cell trajectory inference, and limit the cellular throughput of scRNA-seq. Several doublet detection algorithms are
currently available, but their generalization performance could be further improved due to the lack of effective feature-embedding
strategies with suitable model architectures. Therefore, SoCube, a novel deep learning algorithm, was developed to precisely detect
doublets in various types of scRNA-seq data. SoCube (i) proposed a novel 3D composite feature-embedding strategy that embedded
latent gene information and (ii) constructed a multikernel, multichannel CNN-ensembled architecture in conjunction with the feature-
embedding strategy. With its excellent performance on benchmark evaluation and several downstream tasks, it is expected to be a
powerful algorithm to detect and remove doublets in sScRNA-seq data. SoCube is freely provided as an end-to-end tool on the Python
official package site PyPi (https://pypi.org/project/socube/) and open-source on GitHub (https://github.com/idrblab/socube/).
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INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) has
emerged as a widely applicable and powerful technology that
has evolved into a vital tool enabling revolutionary discoveries
in biomedical sciences [1-7]. However, the existence of doublets
(or multiplets), which contain two or multiple cells in a droplet
due to technical defects [8], seriously interfere with single-cell
transcriptomics studies in several ways. First, doublets change
the real distribution of cells and genes, which is vital for many
downstream tasks, such as cell clustering; second, doublets
limit the cell throughput of scRNA-seq because the proportion
of doublets in droplets, which is positively correlated with cell
concentration, follows a Poisson distribution [9]. There are some
experimental techniques to detect doublets, such as cell hashing
(doublets are droplets whose barcodes are associated with more
than one oligo-tagged antibody) [10], Demuxlet (doublets are
droplets whose barcodes are associated with mutually exclusive

sets of SNPs) [11], Species mixture (doublets are droplets whose
barcodes are associated with more than one species) [12] and
MULTI-seq (doublets are droplets whose barcodes are associated
with more than one lipid-tagged index) [13].

However, the experimental techniques have many limita-
tions. First, the experimental techniques often require special
experimental preparation, long experimental periods and extra
cost [14]. Second, these techniques are not applicable in all
scenarios. Identically, for cell hashing, if the cell of interest does
not express the surface proteins we need, it will result in failure
to assign each cell to its original sample [10]. Additionally, some
techniques cannot detect doublets formed by cells from the same
sample indices. More importantly, all these experimental
techniques cannot be applied to existing scRNA-seq datasets from
public platforms, such as GEO [15], DISCO [16], LINCS 1000 [17]
and KPMP atlas [18], which are widely used by biological data
scientists who often do not have enough experimental resources.
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Therefore, the development of automatic doublet detection
computational algorithms has received increasing attention
[7,18-22].

Currently, some computational doublet detection algorithms
have been developed based on distinct algorithms [12, 23-29].
According to their different feature-embedding strategies and pre-
diction models, the above algorithms can be divided into two cate-
gories: traditional machine learning algorithms and deep learning
algorithms. Traditional machine learning algorithms, with Dou-
bletFinder (DF) [24] and scDblFinder [30] as representative algo-
rithms, mainly use principal component analysis (PCA) for feature
embedding and then use kNN [24], gradient boosting [25] or other
algorithms to detect doublets. Deep learning algorithms repre-
sented by Solo [23] mainly use Variational Autoencoder (VAE),
implemented in the Python package scVI [31], for feature vector
embedding and then detect doublets by deep neural network. It
is common sense that feature embedding plays a vitally impor-
tant role in omics tasks [32-37]. However, the feature-embedding
strategies of the above doublet detection algorithms have two
limitations: (i) biological associations between different genes,
such as gene regulation, are important potential features [38], but
PCA and VAE lack the ability to characterize gene associations
while also lacking biological interpretation; and (ii) the feature
dimensionality of scRNA-seq is often very high [39], and reduction
by PCA or VAE is a normal strategies to cope with the ‘curse
of dimensionality’ [32] but results in the loss of much useful
information. Studies in bulk RNA-seq have proven that 2D matrix
representations can better preserve information while alleviat-
ing the ‘curse of dimensionality’ compared to the 1D vector
embedded by PCA [39].

In our research, a novel deep learning algorithm, SoCube, was
proposed to detect doublets from a user-given scRNA-seq UMI
matrix, and previous limitations were addressed by innovation
in feature-embedding strategy and model architecture (workflow
is shown in Figure 1). For feature-embedding innovation, SoCube
is the first to apply a 3D feature-embedding strategy to scRNA-
seq, which works by embedding gene biological associations into
the first two dimensions and embedding gene-specific features
into the third dimension. This strategy alleviates the ‘curse of
dimensionality’ without losing the original information but also
mines new information with better biological interpretation,
such as biological associations of genes. For model architecture
innovation, SoCube innovates with an ensemble model archi-
tecture based on a multikernel, multichannel convolutional
neural network (CNN) in conjunction with the above novel
feature-embedding strategy. With state-of-the-art (SOTA) gen-
eralization performance on benchmark evaluation and several
downstream tasks, it is expected to be a powerful tool to detect
doublets in scRNA-seq data.

MATERIALS AND METHODS

Workflows of SoCube
Feature embedding

Before embedding, genes with a mean expression less than 0.05
and droplets (cells) with library sizes less than 1000 were filtered
to reduce the sparsity and dimensions of the raw scRNA matrix
(droplet removal is only for feature embedding, these droplets
still remain unless they are detected as doublets) [40]. Feature-
embedding strategy is illustrated in Figure 2. The pairwise dis-
tances of genes were calculated based on the differential intercel-
lular expression of genes. The distance metric is a hyperparam-
eter, and the default setting is the Pearson correlation distance.

Based on these pairwise distances, the genes were projected onto
a 2D feature space as feature points by using UMAP [41].

These feature points embed the broadly learned correlation
relationships of genes. The points were further assigned to a
2D grid gene map (Gmap) by using the Jonker-Volgenant (J-V)
algorithm, which was implemented in the Python package lapjv
v1.3.1 to solve the linear assignment problem [42]. In the process
of building Gmap, g genes corresponding to the required grid
with width m = [,/g] and height n = [Z] + 1. The purpose of
using J-V algorithm is to establish the optimal mapping between
the UMAP feature space U of genes and the grid space G, and
a grid in the Gmap represents the position of its corresponding
gene in 2D space. Thus, 2D Gmap maintains the broadly learned
correlation relationships of genes. As the number of grids will be
slightly larger than the number of genes in most of the cases, the
unmatched grids will be filled with zero.

Meanwhile, the genes’ low-dimension embedding vectors
(Guectors) were calculated by using the PCA algorithm (default
target dimension setting is 10). Gmap represents gene biological
associations, while Guectors represents gene specificity-based
multichannel information. Finally, Gmap (m x n) and Guectors
(d) were projected onto a 3D complex embedding (G3D, m x
n x d) feature space, that is, Guectors were assigned to the
position of their corresponding genes according to the gene
arrangement in Gmap. G3D is droplet-independent universal
feature embedding, and each droplet’s 3D feature embedding
was calculated by multiplying its gene expression value with
G3D.

Doublet simulation

Doublet simulation is required to perform doublet detection
task because this task is not suitable for directly using models
trained on other datasets, and thus SoCube provides three
different doublet simulation strategies: balance simulation
strategy, heterotypic-doublet-first simulation (HEFS) strategy
and homotypic-doublet-first simulation (HOFS) strategy. Balance
simulation strategy generates in silico doublets by taking the
sum of two randomly chosen observed droplets, which is typical
strategy widely used [12, 23, 24]. Suppose the number of in
silico doublet is N, HEFS strategy randomly chooses 5N pairs
of droplets, sorts them in descending order based on Pearson
correlation distance, and selects the top N pairs of droplets to
generated doublets. HOFS strategy works similarly with HEFS
but sorts droplet pairs in ascending order (or selects the last
N pairs). Doublets generated by HEFS contain more heterotypic
doublets, which formed by cells from different cell types, and
doublets generated by HOFS contain more homotypic doublets,
which contain only one cell type. Balance simulation chooses
droplets without any bias and generated doublets’ number will
be more balanced between the types. Users could select different
simulation strategy according to their dataset features. Besides,
SoCube provides an option to set the scaling factor (default is 1.0)
for the ratio of the doublet unique molecular identifiers (UMI)
level to the singlet UMI level if users have reason to believe that
the doublet’s UMI s less than twice the singlet’'s UMI on average. N
in silico doublets were generated and mixed with observed droplets
as the training set. N was calculated based on the proportion
setting (default is 1.0) of positive and negative samples in the
training set.

Model fitting and doublet removal

A multikernel, multichannel CNN-ensembled architecture,
SoCubeNet, was constructed for the doublet detection task
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Figure 1. Overview of the SoCube workflow. (A) Input: scRNA-seq data mixed with singlets (marked as blue) and doublets (marked as orange). (B) Droplet
embedding: each droplet’s 1D gene expression vector is embedded into a 3D feature (SoCube) with gene similarity and uniqueness representation. (C)
Doublet simulation: doublets used for model fitting are generated by taking the sum of randomly chosen observed droplets (regarded as putative
singlets). The mixture of in silico doublets and putative singlets is used for model fitting. (D) Model fitting: a multikernel, multichannel CNN-ensembled
architecture was designed for fitting embedded droplet data. An ensemble learning strategy was used to correct the bias result from dataset division.
(E) Doublet prediction and removal: droplets whose probability scores are greater than the threshold will be regarded as doublets and removed.
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Figure 2. Procedure of droplet embedding. (A) Data filtering: genes with low mean expression (<0.05) and droplets with low library size (<1000) will be
filtered. (B) 2D decomposing and gridding: filtered scRNA-seq will be projected onto a 2D feature space by UMAP and then assigned to a 2D grid map
by the J-V algorithm and the unmatched grids will be filled with zero. (C) 10D decomposition: gene 10D latent features will be calculated by PCA. (D)
Combining and droplet mapping: gene 10D latent features and a gene 2D grid map will be combined into a 3D embedding. Each droplet will be mapped

into 3D embedding according to the gene expression value.

(illustrated in Figure 3). The base learner (also named as
basic model) is formed with a feature extraction layer and
classification layer. The feature extraction layer mainly contains
two InceptionV1l blocks. Each block has three multichannel
convolution kernels with different kernel sizes. Such a block
can integrate multichannel input from droplets’ 3D embedding
features under different receptive fields. The classification layer

is formed with three fully connected layers. Latent features
extracted automatically by the feature extraction layer are passed
to the classification layer, and the probability score of doublets
is output. The binary cross entropy (BCE) defined in equation (1)
was used as the loss function. The Adam optimizer was used
to minimize the loss value, the initial learning rate was 0.001,
and an exponential learning rate decay strategy was used with

€20z aunp /0 uo Jasn Ayssaniun Bueilsyz 9ousidg Jo 969109 Ad 8Z 1 180./701PRAA/E/FZ/aI101E/qI0/W0ddNo dlWspeoe)/:Sdjjy WoJ) POPEOJUMOQ



4 | Zhangetal.

o
=]
o
=
( ! N Il !
multichannel CNN multichannel CNN multichannel CNN
| 3%x3x10 ﬂ \ 3x3x%x10 [ [ 3x3x10 Ij
— multikernel CNN multikernel CNN multikernel CNN
(V] (1 1]
3 i O m O
S S | H | B H
Q wee wee oo oo soe ese
§ H O H O H O
dense layer dense layer dense layer
- J G J g _
& [ J |
| 1
4 v + -
probability score probability score probability score
(1 1]
()]
)
g
@ | Ensemble by averaging of k models’ probability score |
e |
singlet doublet

Figure 3. Architecture of SoCubeNet. It is an ensemble model architecture, which contains k basic models, each basic model contains two feature
extraction blocks (multichannel CNN and multikernel CNN) and a classification block (dense layer) and will be trained independently by k-fold cross-

validation sampling.

hyperparameter y = 0.99.
BCE = — (ylog§+ (1-y)log (1—)7)) (1)

where y is the numerical label and y is the predicted doublet
probability score.

Self-fitting by randomly dividing the dataset into training and
validation sets results in bias. Thus, Bagging, a parallel ensemble
learning strategy, was applied in SoCube to minimize this bias
(43, 44]. Datasets generated from the doublet simulation step will
be used to fit k (default setting is 5) models independently by
k-fold cross-validation sampling. Unlike the traditional Bagging
strategy, which uses bootstrap sampling, k-fold cross-validation
sampling can ensure that all droplets will be sampled. The
final doublet probability score is the average of k models’
probability scores. Based on the predicted doublet probability
score, SoCube removes the droplets whose scores are greater
than the threshold. As with most models, the default probability
thresholdis 0.5. Users can remove a specific proportion of droplets
according to the probability score or just apply the default
setting.

Quantification analysis

The existence of doublets in scRNA-seq influences many scRNA-
seq downstream analyses. Therefore, SoCube performance was
evaluated from the following perspectives. Previous represen-
tative algorithms Solo, DoubletFinder and scDblFinder were
selected as comparison algorithms. The official recommended
parameter settings of the other three algorithms were used when
performing the following evaluations.

Benchmark evaluation

Sixteen benchmark datasets were collected from previous publi-
cation studies to evaluate the performance of SoCube for detect-
ing doublets [10, 11, 13, 14, 23]. The various formats of the original
data were uniformly converted into ‘h5ad’ format, a hierarchi-
cal scRNA-seq data format implemented in the Python package
anndata, to be readable by SoCube. AUPRC and AUROC, two
metrics of the overall accuracy of a binary classification algorithm
implemented in the Python package scikit-learn, were used to
evaluate the overall doublet detection accuracy.

Each algorithm was tested five times in parallel on 16 datasets,
respectively, and the average value was taken as the final result.
And then the top-performing dataset number of each algorithm
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was counted based on test result. Besides, the prediction perfor-
mance of SoCube for droplets of different library sizes in a dataset
was evaluated on these datasets and used the average value as
final result again. For details, droplets of each dataset were sorted
in ascending order according to cell library size and were divided
into ten equal-sized bins after predicted by SoCube. The first bin
contained droplets in the top 10% of the library size, the second
bin contained droplets with library sizes between 10 and 20%,
and so on. The assessment of model generalization is relative, but
the absolute metrics such as AUPRC are different for different
datasets. In order to treat each dataset equally in terms of its
contribution to generalization assessment, the result of each bin
was scaled by maximum-minimum normalization.

Cell clustering analysis

To evaluate the performance of SoCube for removing spurious
cell clusters, a real scRNA-seq dataset ‘scPred_pbmc_1’, which
contains eight different cell types, was fetched from previous
research [45]. Based on the balance doublet simulation strategy
mentioned in the SoCube workflow, which also widely adopted by
previous algorithm, doublets were introduced with a 20% doublet
rate. Louvain clustering [46] implemented in the R package Seurat
(v4.1.0) was used to identify cell clusters on its clean version with-
out doublets (‘clean dataset’) and its post-doublet-detection ver-
sion after each doublet detection algorithm was applied (droplets
whose doublet probability scores were greater than the default
threshold were removed). The cell cluster result was marked on
the same graph as the clean dataset, and the clean dataset result
was used as a positive control for benchmarking spurious cell
cluster removal on the post-doublet-detection datasets.

Differentially expressed gene analysis

To evaluate four doublet detection algorithms from this perspec-
tive, a synthetic scRNA-seq dataset with two cell types and 1126
between-cell-type DE genes (6% of a total of 18 760 genes) was
fetched from previously published research [14]. MAST and the
Wilcoxon rank-sum test implemented in the R package Seurat (v
4.1.0) were applied to this dataset (‘contaminated dataset’) and
its post-doublet-detection version after each doublet detection
algorithm was applied [47-49]. After each DE method was applied
to every dataset, genes whose Bonferroni-corrected P values were
under 0.05 were identified as DE genes. Three accuracy mea-
sures—precision, recall, and TNR—were calculated for every set of
identified DE genes. For each DE method, its accuracy on the ‘con-
taminated dataset’ was used as the negative control for bench-
marking its accuracy on the post-doublet-detection datasets.

Cell trajectory inference

Two synthetic scRNA-seq datasets were fetched from previous
research [14]. Both datasets contained 1000 genes. The first
dataset consisted of 100 doublets and 500 singlets following
a bifurcating trajectory, whose two branches had 250 singlets
each, and the second dataset consisted of 250 doublets and 1000
singlets from a conjunction of three sequential trajectories. Each
dataset was expanded into a suite, including its original version
(‘contaminated dataset’), its clean version without doublets
(‘clean dataset’), and its post-doublet-detection version after each
doublet detection algorithm was applied (droplets whose doublet
probability scores were greater than the default threshold of 0.5
were removed). The cell trajectories of the two datasets were
constructed by the minimum spanning tree (MST) algorithm
implemented in the R package slingshot (v2.2.1) [50]. Trajectories
constructed from the contaminated datasets and the clean

SoCube | 5

datasets were used as the negative and positive controls for
benchmarking the trajectories inferred from the post-doublet-
detection datasets.

For temporally DE gene analysis, a synthetic dataset was
fetched from previous research [14]. This dataset had 250
temporally DE genes (tDEG) out of a total of 750 genes. Slingshot
and TSCAN were used to infer the pseudotime of each droplet
on this dataset (‘contaminated data’) and its post-doublet-
detection version after each doublet detection algorithm was
applied (droplets whose doublet probability scores were greater
than the default threshold were removed). Then, for each
dataset, each gene’s levels were regressed in all droplets based
on inferred pseudotime by the general additive model (GAM),
which was implemented in the R function gam, and a P
value was obtained [51]. Similar to previous DE gene analysis,
genes whose Bonferroni-corrected P values were less than
0.05 were identified as tDEGs. Three accuracy measures—
precision, recall, and TNR—were calculated for every set of
identified tDEGs. For each temporally DE method, its accuracy
on the contaminated dataset was used as the negative control
for benchmarking its accuracy on the post-doublet-detection
datasets.

RESULTS AND DISCUSSION

To illustrate the difference of three doublet simulation strategies,
dataset hm-6k [5] was used and visualized real singlets, real dou-
blets annotated by cell hashing and in silico doublets generated by
three strategies on UMAP 2d feature space (shown in Figure 4A).
Dataset hm-6k contains two species (human and mouse) and
heterotypic doublets are in majority. It can be observed that data
distribution of in silico doublets generated by HEFS is similar
to the distribution of real doublets, and by contrast, doublets
generated by HOFS is absolutely separated with real doublets.
As the purpose of generating in silico doublets is to simulate real
doublet distribution, the simulation strategies will significantly
influence detection result. Besides balance random simulation
strategy, which widely adopted by previous algorithms, SoCube
innovatively proposed heterotypic-doublet-first simulation and
homotypic-doublet-first simulation to fit more datasets. For many
datasets, a balanced simulation strategy is sufficient by default,
but for severely type-imbalanced datasets like hm-6k, adopting
a post-typically-biased strategy will significantly improve perfor-
mance. For example, performance on hm-6k has ~10% improve-
ment when using heterotypic simulation strategy. Users are free
to choose the SoCube’s simulation strategy according to their data
situation.

From the benchmarking of real datasets, SoCube’s innova-
tive 3D feature-embedding strategy and ensembled multichannel
CNN architecture were able to significantly improve the doublet
detection result’s accuracy with good robustness and generaliza-
tion performance.

Optimum generalization performance on real
benchmark datasets

The accuracy of doublet detection is the most direct and
important evaluation criterion. Sixteen benchmark datasets
were collected from previous publication studies to evaluate
the performance of SoCube for detecting doublets (shown in
Supplementary Table S1 online at http://bib.oxfordjournals.org/)
[10,11, 13, 14, 23]. These datasets have different cell types, dataset
sizes (ranging from 500 to 26 426), and doublet ratios (ranging
from 3.43 to 37.31%) and use four different doublet detection
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Figure 4. The performance of the four computational doublet detection algorithms on benchmark datasets. (A) Three doublet simulation strategies of
SoCube and visualized on hm-6k dataset. (B) Generalization performance on 16 benchmark datasets. The bar chart indicates the count of datasets
for which each algorithm achieved top performance, and the line chart indicates the average prediction result of 16 datasets for each algorithm.
(C) Performance of the four algorithms on datasets annotated by Cell hashing, Demuxlet, MULTI-seq or Species mixture under AUPRC and AUROC.
DoubletFinder is missing in AUROC because it has no top-performance dataset in any of the four types of annotation methods. (D) scaled average
performance of the four algorithms stratified by cell library size on 16 benchmark datasets. The left radar map shows the performance in terms of
AUPRC, and the right shows the AUROC. Each corner represents a bin, and the smaller the bin number, the smaller the cell library size of the sample it
contains.

experimental methods (cell hashing, Demuxlet, MULTI-seq and previous studies [23, 52] and these collected datasets. Thus, the
Species mixture) to ensure the generalizability of evaluation. area under the precision-recall curve (AUPRC) and the area under
Doublets typically make up 5-20% of droplets according to the receiver operator curve (AUROC) were used to evaluate the
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accuracy of the four doublet detection algorithms because those
two metrics are suitable for imbalanced datasets. The association
of AUROC and AUPRC has been mathematically proven [53], but
AUPRC is sensitive to class distribution and is more concerned
with doublet prediction precision, while AUROC is insensitive
to class distribution and is more concerned with predictors’
overall performance. Hence, both of them were used for the
comprehensive evaluation of SoCube.

The accuracies of doublet detection of SoCube, DF, Solo
and DoubletFinder on 16 benchmark datasets are shown in
Supplementary Table S1 online at http://bib.oxfordjournals.org/
and Figure 4 (see method details in the ‘Benchmark Evaluation’
section). As shown in Figure 4B, SoCube performed best on most
datasets, specifically, the best performance was achieved with the
benchmark datasets of 10/16 under both AUPRC and AUROC. The
performance of SoCube is also competitive on the remaining six
datasets. Overall, on the average performance of 16 datasets,
SoCube slightly outperforms the other three algorithms with
57.4% AUPRC and AUROC at 80.9%. Although there is no denying
that scDblFinder also performs well on some datasets, which
reinforces the famous ‘No Free Lunch’ theorem in machine
learning [54]. The overall performance proved that SoCube had
better generalizability and could be applied to many scRNA-
seq data.

Different experimental doublet detection methods tend to
have different preferences for doublets, which are determined
by their mechanisms [14]. The doublets annotated by different
experimental methods are actually different subsets of all
doublets existing in the data. To evaluate the generalization
performance of SoCube, the winning rates (i.e. the number
percentage of top-performing datasets) of SoCube, DF, Solo and
scDblFinder on datasets annotated by the four different exper-
imental doublet detection methods were evaluated, as shown
in Figure 4C. SoCube performed best on datasets annotated by
all four experimental methods. The performance of the four
algorithms was found to be comparable on the dataset annotated
by Demuxlet under AUROC and on the dataset annotated by Cell
hashing under AUPRC. The results illustrate SoCube’s powerful
generalization performance on a variety of different experimental
annotation datasets to capture the real difference between
singlets and doublets.

Cell library size, defined as the total sum of counts across all
genes for each cell, has a great effect on the accuracy of doublet
detection [25]. Hence, the prediction performance of SoCube for
cells with different library sizes in each benchmark dataset was
evaluated for comprehensive comparison and scaled result is
shown in Figure 4D. It is seen that scDblFinder, as an improved
version of DoubletFinder, has a very good performance on small
library size samples (bin 1, 2, 3, 4) under AUPRC. But SoCube has
a much better performance in samples with large library size. It
may be that the information abundance of samples with small
library size is lower and deep learning algorithms are more prone
to overfitting. However, samples with small library size are often
filtered in downstream analyses due to poor data quality, so the
performance in samples with large library size is more critical.
The AUROC of SoCube is almost the best on cells of different
library sizes, which indicates that SoCube can well reduce the
false positive rate, thus reducing the loss of information caused
by normal cells being removed by mistaken identification as
doublets. Therefore, it can be concluded that SoCube has better
generalization performance for samples of different cell library
sizes.
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Effect on downstream analysis
More realistic cell clustering

The existence of heterotypic doublets will result in the misin-
terpretation of spurious cell clusters formed by annotating het-
erotypic doublets as novel cell types [19]. To evaluate the capacity
of SoCube for removing spurious cell clusters, the test dataset
‘scPred_pbmc_1" was collected from previous research [45] (see
method details in the ‘Cell Clustering Analysis’ section). The
visualization clustering result is illustrated in Figure SA. To com-
pared with the ground truth cell types distribution, the clustering
results of the datasets processed by different doublet detection
algorithms used the same clustering visualization points as the
positive control group (clean data), and the cell clusters were
distinguished by color annotation. Visually, the SoCube-processed
group showed the most similar results to the positive control
group. It can also be seen that the change in the number of
clusters corroborates the previous assertion about the negative
effects of doublets. There are 14 cell clusters in negative control
group, significantly more than the positive control group with
8 cell clusters. The four computational algorithms effectively
reduced the number of wrong clusters by removing the doublets,
with SoCube and Solo obtaining the same number of clusters as
the positive control group, scDblFinder obtaining 9 clusters, and
DoubletFinder obtaining 10 clusters.

In addition, to quantitatively evaluate the reliability of cell
clustering after using different detection algorithms, the Jaccard
similarity coefficient (also named the Jaccard index) was calcu-
lated compared to ground truth cell types. Here, a higher Jaccard
correlation coefficient indicates that the clustering-based cell pair
set B is more consistent with the true type-based cell pair set A,
which in turn indicates that the prediction results of the clus-
tering algorithm are more realistic and reliable. The test shows
that the Jaccard similarity coefficient of the positive control group
without any doublet is the highest at 26.35%, which is normal
and acceptable given that clustering algorithm is unsupervised
learning algorithm. However, it can still be seen that the Jaccard
similarity coefficient of SoCube group is the closest to the positive
control group at 25.75%. In contrast, Solo and DoubletFinder were
22.47% and 20.28%, respectively, both at least 3% points lower
than SoCube. scDblFinder has performed well in the previous
benchmark tests, but the Jaccard similarity coefficient for SoCube
is atleast 3% points lower than SoCube. Although scDblFinder per-
formed well in the previous benchmark test, its Jaccard similarity
coefficient of 19.86% was seen in the cluster analysis, slightly
inferior to DoubletFinder. It is obvious that SoCube was more
consistent with the control group in terms of both the number of
clusters and the Jaccard similarity coefficient. In summary, from
the perspective of cell clustering analysis, SoCube is able to obtain
more realistic cell clustering results fromits processed data due to
its excellent feature-embedding strategy, unique neural network
model design and various doublet simulation strategies.

More differentially expressed genes reserved

The correct identification of differentially expressed genes (DEGs)
between specific cell types is key to understanding phenotypic
variation [55]. DEG analysis is based on the ‘identical distribution’
assumption that cells of the same type follow the same
distribution of gene levels [19, 56]. For differential analysis of read
count data, the Poisson distribution and the negative binomial
distribution are the most commonly used models [56]. However,
the existence of doublets in scRNA-seq will interfere with
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Figure 5. Cell clustering analysis and differential expression analysis cross-cell type. (A) Clustering results of datasets processed by the four
computational doublet detection algorithms. The positive control group was clustered using scRNA-seq without any doublets and negative control
group was clustered by original datasets. The category ‘missing cell’ means that these cells were misinterpreted as doublets and removed by the
detection algorithms. The numerically labeled categories were obtained by the Louvain cluster algorithm. Each group’s Jaccard index was calculated
compared with the true cell types. (B) The effects of four computational doublet detection algorithms on DEG analysis. The Wilcoxon test and MAST
were separately used as the DEG analysis method. The three polar plots show the precision, recall and TNR of four computational doublet detection
algorithms.
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Figure 6. Cell trajectory inference and temporally DEG analysis of scRNA-seq datasets processed by SoCube, DoubletFinder and scDblFinder. (A)
Bifurcating or sequential trajectory inference, ‘negative control’ results from raw scRNA-seq, ‘positive control’ results from clean scRNA-seq, and red
points represent remaining doublets. (B) Temporally DEG analysis results of SoCube, DoubletFinder and scDblFinder using TSCAN or Slingshot as the

cell trajectory inference method.

downstream DEG analysis by violating this assumption [19].
Therefore, if a doublet detection algorithm is effective in removing
doublets, it will improve the accuracy of DEG analysis.

SoCube was benchmarked on a scRNA-seq dataset fetched
from previous research [14]. The effect gains of DEG analysis on
the contaminated dataset and its post-doublet detection version
are shown in Figure 5B (see method details in the ‘Differentially
Expressed Gene Analysis’ section). In general, SoCube achieves
SOTA performance that is comparable to scDblFinder on both
Wilcoxon and MAST differential test DEG analysis. In detail, the
effect gains of different doublet detection algorithms on DEG

analysis differed less in precision and TNR but differed signifi-
cantly in recall. Higher precision and TNR indicate more accu-
rate DEGs, while higher recall indicates fewer missed real DEGs,
and the two are often incompatible. Researchers often prioritize
higher precision and TNR by adjusting DEG analysis method
parameters to obtain accurate differential genes, but this results
in the loss of biological information contained in other unidenti-
fied DEGs [55]. Therefore, it makes sense to significantly improve
recall without reducing high precision and TNR. SoCube and scD-
blFinder achieved the comparable gains of ~6% for metric recall
compared with the negative control group, while DoubletFinder

€20z aunp /0 uo Jasn Ayssaniun Bueilsyz 9ousidg Jo 969109 Ad 8Z 1 180./701PRAA/E/FZ/aI101E/qI0/W0ddNo dlWspeoe)/:Sdjjy WoJ) POPEOJUMOQ



10 | Zhang et al.
A
Dispersion: 0.04 Dispersion: 2.22 Dispersion: 0.47
PR o
B e
{
Control SoCube Solo
@ Doublet  Singlet

pbmc-1A-dm

HMEC-rep-MULTI

pbmc-1C-dm

Figure 7. Visualization of interpretability analysis of SoCube. (A) Reduction and visualization of pbmc-1A-ch latent features extracted by SoCube and
Solo. The ‘Dispersion’ value is the dispersion of doublets and singlets. The control group was visualized from the original features. (B) WGCNA was
performed on three benchmark datasets. Heatmaps were plotted based on SoCube’s 2d Gmap embedding feature. Each grid represents a gene. Genes
marked with the same color are coexpressed genes. Light gray grids indicate that these genes do not belong to any coexpressed gene cluster.

and Solo achieved gains of only ~5% and ~4%, respectively. Given
that there are over 1000 DEGs in this dataset, the impact of such a
recall gain difference would be significant. Although SoCube did
not significantly outperform scDblFinder in terms of differential
expression analysis, the performance of SoCube was also at the
level of SOTA, and SoCube’s feature embedding strategy is highly
biologically interpretable and transferable, so this does not negate
the excellence of SoCube.

More reliable cell trajectory

Cell trajectory inference or pseudotemporal ordering is a com-
putational technique used in single-cell transcriptomics to deter-
mine the pattern of a dynamic process experienced by cells and
then arrange cells based on their progression through the process
[57]. The cell trajectory corresponds to a cellular process, such
as cell differentiation, and is based on the similarity of cells in
terms of gene expression profiles [58]. Therefore, the existence
of doublets in scRNA-seq also confounds cell trajectory inference
[59]. Cell trajectory inference is biased by the existence of doublets
because doublets may result in spurious branches in an inferred
trajectory.

To evaluate the direct gains of cell trajectory inference after
removing doublets by SoCube, it was tested on two datasets
[14] containing different trajectories, and cell trajectories were
inferred from original datasets and datasets processed by four
doublet detection algorithms, as shown in Figure 6A (see method
details in the ‘Cell Trajectory Inference’ section). The result from
Solo was not obtained because Solo did not work properly on these
two datasets and returned an ‘NaN error’ (a common error when
intermediate values are close to infinity or zero), which showed
Solo’s limited robustness.

As shown in the first row of Figure 6A, one dataset contains a
bifurcating trajectory and another dataset contains three sequen-
tial trajectories. Due to the interference of doublet on the statisti-
cal distribution of cells, a spurious branch deviating from normal

cells was inferred in the negative control group (not perform dou-
blet removal) of the dataset containing the bifurcating trajectory,
which directly confirmed the aforementioned negative effect of
doublet on cell trajectory inference. However, we need to note that
doublet does not always lead to spurious branches, depending
on the distribution of doublet relative to normal cells. As shown
in the second row of Figure 6A, in the negative control group of
another dataset containing three sequential trajectories, no spu-
rious branch found because doublets were balanced distributed
on both sides of the normal cells. It can also be seen that the
results of both SoCube and scDblFinder groups are very similar
to the cell trajectories of the positive control group (without any
doublet), with few residual doublets (points marked in red) in both
groups. This reveals the excellent performance of both detection
algorithms. In contrast, DoubletFinder not only remove a limited
number of doublets, but also led to the formation of spurious
branches not found in the negative control group due to the
unbalanced number of removed doublets on either side of the
trajectory of the second dataset. An interesting phenomenon was
observed, where the fit of the cell trajectory after application of
SoCube was even better than that of the positive control. The
few doublets that were not removed by SoCube caused an effect
on the cell trajectory inference within the margin of error [14].
Therefore, both scDblFinder and SoCube are effective doublet
detection algorithms in terms of cell trajectory inference.
Temporally differentially expressed gene (tDEG) analysis, a typ-
ical downstream task following cell trajectory inference, explores
differential gene expression along the inferred cell trajectory and
identify tDEGs [58]. Therefore, the existence of doublets also
decreases the accuracy of tDEG identification. The evaluation
results of the temporally DEG analysis shown in Figure 6B were
similar to the cell trajectory inference (see method details in the
‘Cell Trajectory Inference’ section). Whether using Slingshot or
TSCAN as the method for cell trajectory inference, the datasets
with doublets removed by SoCube had the highest precision and
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TNR value for temporally DEG analysis. DoubletFinder had a slight
advantage in recall when using Slingshot as cell trajectory infer-
ence, but this did not make up for the significant gap with SoCube
in other metrics. Solo did not work on this test dataset again due
to the ‘NaN error’ returned. While scDblFinder is comparable in
cell trajectory inference, SoCube showed better performance in
temporally DEG analysis.

In summary, SoCube’s novel feature-embedding strategy, dou-
blet simulation strategies and model architecture are effective
and make inferred cell trajectories more reliable with fewer spuri-
ous branches, which in turn improves the results of downstream
task temporally DEG analysis.

Interpretability analysis

To explore the reason why SoCube is effective for doublet detec-
tion, the real dataset pbmc-1A-ch was used as test data, and
its internal latent features produced by SoCube and Solo were
downscaled and visualized (see Figure 7A). DoubletFinder and
scDblFinder were not included because internal latent features
could not be obtained from them. In addition, the dispersion of
the result (defined as the relative Euclidean distance between
the doublet average and the singlet average) was quantitatively
evaluated. Doublets were mixed with singlets in a control group
with very low dispersion, and doublets were gathered into the
edge area of singlets after processing by SoCube and Solo. Quan-
titatively, the dispersion value of SoCube was greater than that
of Solo. One of the most important advantages of SoCube is the
representation ability of the gene-gene inner relationship, which
was explained by a weighted gene coexpression network analysis
(WGCNA) implemented in the R package WGCNA [60], a widely
used data mining method for studying gene-gene correlations.
Three benchmark datasets selected as case studies were pre-
processed by Seurat, and the WGCNA pipeline [61] was applied
to determine the modules of coexpressed genes. The results are
visualized in Figure 7B. It is obvious that SoCube was able to
gather coexpressed genes while embedding the original droplet
feature into 2D Gmap. The distance of two genes in SoCube’s
Gmap could represent their biological relationship.

The most innovative change in SoCube compared with pre-
vious doublet detection algorithms was proposing a brand-new
cell feature-embedding strategy. This embedding feature captures
gene-gene correlations and gene uniqueness information into
local areas. The CNN architecture model effectively uses this
information to find a low nonlinear dimension space that can dis-
tinguish between singlets and doublets. Solo uses VAE to extract
features directly from original data [23]. However, original SCRNA-
seq is very sparse, and the existence of many zeros hinders weight
optimization of VAE [40]. In addition, original scRNA-seq data
features are unordered [39], and VAE lacks the ability to discover
internal feature relationships, such as coexpressed genes, which
are important biological feature patterns related to biological
process regulation [60, 62]. Thus, the dispersion between singlets
and doublets in the low-dimensional space generated by SoCube
was greater than that generated by Solo, which resulted in the
success of SoCube. The key algorithm of scDblFinder and Dou-
bletFinder use kNN to cluster droplets and then predict based
on similarity to the in silico doublets. On the one hand, kNN as a
linear algorithm does not extract complex biological information
well [63], and on the other hand, the features used by these
algorithms do not take well into account the uniqueness of each
gene in a complex biological network, and this uniqueness is also
a potential representation of the cell [64, 65].
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CONCLUSIONS

In summary, the ability of SoCube to detect doublets facilitates
the task of downstream analysis of single-cell transcriptomics.
SoCube effectively improves the generalization performance of
doublet detection for scRNA-seq data by adopting a new feature-
embedding strategy, using a deep learning approach with CNN
architecture, and supplemented with an ensemble learning strat-
egy. Therefore, SoCube promises to be a powerful algorithm that
can help researchers more effectively remove doublets from their
data to improve the reliability of subsequent analysis results and
reduce experimental cost. At the same time, the novel feature-
embedding strategy proposed by SoCube can be transferred to
other single-cell omics tasks.

Key Points

e This study proposed a novel Al-based doublet detection
algorithm (named SoCube), which significantly improve
generalization performance compared with previous
SOTA algorithms.

e This study proposed a novel 3D composite feature-
embedding strategy, which mined intrinsic associations
between genes from high-dimensional, sparse and disor-
dered raw features.

e This study proposed three doublet simulation strate-
gies with different propensities (balance, heterotypic-
doublet-first and homotypic-doublet-first) to accommo-
date different data.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.
com/bib.

FUNDING

National Natural Science Foundation of China (81872798 and
U1909208); Natural Science Foundation of Zhejiang Province
(LR21H300001); Leading Talent of the ‘Ten Thousand Plan’—
National High-Level Talents Special Support Plan of China; Fun-
damental Research Fund for Central Universities (2018QNA7023);
‘Double Top-Class’ University Project (181201x194232101); Key
R&D Program of Zhejiang Province (2020C03010). This work was
supported by Westlake Laboratory (Westlake Laboratory of Life
Sciences and Biomedicine); Alibaba-Zhejiang University Joint
Research Center of Future Digital Healthcare; Alibaba Cloud;
Information Technology Center of Zhejiang University.

AUTHOR CONTRIBUTIONS

FZ.and H.Z. conceived the idea and designed the study; H.Z. and
M.L. proposed SoCube’s algorithm; H.Z., M.L. and G.L. performed
the evaluation of SoCube; H.Z.,, M.L,, L.Z., W.Z. and Z.X. collected
related datasets and provided related biological support; H.Z. and
M.L. wrote the manuscript; All authors reviewed and approved the
manuscript.

DATA AVAILABILITY

SoCube was built as an end-to-end command line software, pub-
lished on  PyPi (https:/pypi.org/project/socube/),  the

€202 aunf 0 uo Jasn Ausioaun Bueifoyz 9ousidg Jo 969100 AQ 821 180./70LPEAA/E/2Z/a191HE/qIq/W00 dNo"dlWspESE//:SA)Y WOI) PAPEOJUMOQ


https://academic.oup.com//article-lookup/doi/10.1093//bbad104#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://pypi.org/project/socube/

12

| Zhang et al.

official python package site. and was open-source on GitHub
(https://github.com/idrblab/socube/). A docker image was pro-
vided on Docker Hub (https://hub.docker.com/r/gcszhn/socube/)
for fast deployment. All data used in this study were pub-
licly available as previously described. Details were listed in

Supplementary Tables S2 and S3 online at http://bib.oxfordjournals.

org/.
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