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Abstract

In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which
lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been
proposed and applied to identify novel lncRNA–miRNA interactions (LMIs), but there are still imperfections in their RNA representation
and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a
few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus
imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for
LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network
were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than
existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs
from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness
and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
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Introduction
MicroRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) are
reported to play critical roles in diverse biological functions of a
variety of organisms [1, 2], but the mechanisms underlying their
molecular regulation remain elusive [3]. The miRNA regulates
the expression of protein-coding genes by integrating into RNA-
induced silencing complex and pairing with targeted messenger
RNAs (mRNAs) [4, 5]. Within the sophisticated regulatory network
of miRNA, lncRNA can function as a competing endogenous
RNA (ceRNA) to bind with miRNA against mRNA [6], thereby
interfering gene expression [7, 8]. Therefore, the lncRNA–miRNA
interactions (LMIs) are found to be essential for the pathogen-
esis and drug resistance of various diseases [9–14], which indi-
cates the great importance of the identification of novel LMIs
[15, 16].

However, current experimental strategies such as RNA
pull-down, Luciferase reporter assay, microarray and RT-PCR
[17–20] applied for identifying individual LMI can only entail

a slow-growing knowledge and present a limited overview of
ceRNA network, which significantly hamper the advance of this
research field [21]. Recently, the crosslinking immunoprecipita-
tion sequencing (CLIP-seq) has been applied and greatly facilitates
the studies on miRNA-related regulation [22], but this technique
is still limited by its availability and high cost of spend [23, 24].
Therefore, it is urgently needed to have powerful computational
tools to enable the high-throughput and effective discovery of
new LMIs.

So far, many computational methods have been applied for
miRNA-related and lncRNA-related research [25–28]. Based on
these methods, some popular tools have been constructed and
emerged for the discovery of novel LMIs [29, 30]. Some of them
are based on traditional machine learning methods, such as
GBCF [31]. The others are constructed by convolutional neural
network (CNN) and recurrent neural network (RNN), such as
LncMirNet [32], PmliPred [33], CIRNN [34] and preMLI [35]. The
remaining are based on other deep learning (DL) methods, such
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as EPLMI [36], SLNPM [37], GCLMI [38], LNRLMI [39], LMNLMI
[40], GEEL [41] and LMI-INGI [42]. However, all these methods are
constructed using the RNA representation approach that merely
based on sequence, expression profile or their similarity [40]. On
the one hand, such approach cannot fully reflect the roles of
physicochemical and structural properties in determining LMIs
[43]. On the other hand, the similarity among molecules cannot
completely represent their functional relevance since any slight
variation in RNAs could lead to dramatical functional variation
[44]. Moreover, the existing tools do not consider the problem of
information leak [27] and do not utilize the power of DL to trans-
mit information [42]. All these problems significantly limit the
application of the existing tools, which ask for the construction
of new tools with substantially improved RNA representation and
extensively elevated model construction.

In this study, a new method named ncRNAInter was therefore
constructed to enable the discovery of LMI based on DL strat-
egy. This method was unique in (1) integrating a comprehensive
strategy for RNA representation that considered not only the
sequence but also the physicochemical and structural properties
and (2) applying an advanced framework of graph neural network
(GNN) that incorporated information leak avoidance and non-
linear updating for LMI prediction. To test the performance of this
newly developed method, ncRNAInter was systematically eval-
uated from multiple angles and compared with state-of-the-art
methods for LMI prediction, showing great superiority and strong
credibility. Moreover, we appraised the potential applicability of
ncRNAInter in various species and verified its adaptability to
predict unknown LMIs associated with various diseases. Based on
the analyses in this study, the ncRNAInter demonstrated a sig-
nificantly enhanced performance in modern LMI research, mean-
while achieving extraordinary robustness and universal applica-
bility, and could thus be considered as a good complement to
other existing methods in the related research community. The
ncRNAinter tool is open-source, which makes the results of this
study fully reproducible.

Materials and methods
Benchmark datasets and data collection
Numerous methods for human LMI prediction, including LMI-
INGI [42], GEEL [41], LncMirNet [32], EPLMI [36], etc., use experi-
mentally validated RNA interactions from LncRNASNP2 database
[45] to conduct their research. Likewise, in this study, we col-
lected and utilized 18 595 experimentally validated LMIs from this
widely used benchmark dataset to conduct our research, in which
lncRNAs are annotated by ENSEMBL project [46]. Sequence infor-
mation of miRNAs was obtained from miRbase-v22.1 [47], while
sequence information of lncRNAs was obtained from GENCODE-
v38 (the hg38/GRCh38 genome assembly version) [48, 49] through
mapping the symbols of each individual transcript from LncR-
NASNP2 to these databases thoroughly. Furthermore, since the
data from LncRNASNP2 are reported for individual transcripts,
the interactions of similar splicing variants transcribed from the
same gene could lead to redundancies, which might artificially
inflate the performance of the method. To reduce this concern,
redundant sequences (i.e. identity ≥ 0.9 [50]) were discarded using
CD-HIT [51], which uses a short word filter to avoid unnec-
essary alignments and has been widely used as a clustering
algorithm [52]. After sequence information matching and data
screening, invalid data were removed and 13 800 practicable RNA
pairs remained as positive dataset, including 266 miRNAs and
1499 lncRNAs. Random sampling on accessible RNAs against the

positive pairs was applied to build a negative dataset of the
same size as the positive set. The final balanced dataset with
27 600 LMIs was randomly split out 10% for testing using stratified
sampling, and the remaining 24 840 pairs were used for training
and validation. The statistics of the human LMIs data (benchmark
1) are illustrated in Supplementary Table 1, available online at
http://bib.oxfordjournals.org/.

To better support our method and conduct more thorough
analyses, two extra benchmark datasets of other species were
prepared for additional training and verification. Plant LMI bench-
mark dataset (benchmark 2) was derived from the same dataset
constructed by PmliPred [33], which includes 15 000 positive and
negative LMIs from Arabidopsis thaliana, Glycine max and Medicago
truncatula. Virus LMI benchmark dataset (benchmark 3) was col-
lected from ViRBase v3.0 [53]. After similar process of sequence
information matching and redundancy filtering, a total of 9652
interactions between virus miRNA and host (Homo sapiens) lncRNA
were sorted as positive dataset. Then, an equal number of neg-
ative pairs were randomly sampled out, resulting in a final bal-
anced dataset with 19 304 LMIs. The statistics of benchmark 2
and benchmark 3 are also illustrated in Supplementary Table 1,
available online at http://bib.oxfordjournals.org/.

The comprehensive strategy for RNA
representation
A comprehensive strategy for RNA representation is adopted
in this study, differing from those existing sequence-based,
expression-based or similarity-based methods. This strategy
facilitates the deep learning model to distinguish specific
characters of RNAs according to general rather than partial
information, which limits their model’s performance to a certain
level [54]. This innovative strategy could avoid the negative
influence of incomplete feature representation.

There have already been many researches encoding RNA
sequence-intrinsic features to conduct related tasks such as RNA
classification [55, 56], RNA coding potential prediction [52, 57,
58] and physiological function annotation [59]. Though physico-
chemical and secondary structural properties play important
roles in RNA biological functions [28, 55], they were seldom con-
sidered in related research, especially LMI prediction. Therefore,
in this study, RNA features including not only sequence-intrinsic
but also physico-chemical and secondary structural properties
are utilized for RNA feature representation [60, 61]. Specifically,
a total of five codon-related features including Fickett score and
stop codon-related properties; 31 ORF-related features including
basic ORF properties, entropy density profile scores and Hexamer
scores on ORF; 7 GC-related features including Guanine/Cytosine
content properties; 126 transcript-related features including
UTR-related properties, Basic transcript property, K-mer scores,
CTD descriptors, entropy density profile scores and Hexamer
scores on transcripts; 13 physicochemical property features
including Pseudo-protein properties and EIIP spectrum scores;
9 Secondary structure features including multi-scale secondary
scores and secondary structure descriptors are used in this
study, as illustrated in Table 1. These diversified features are
calculated on individual nucleotide sequences and then learned
by DL model to conclude the patterns for LMI prediction. To
the best of our knowledge, this is the most comprehensive
representation strategy that has ever been used in the LMI
prediction problem. All features applied in this study have been
commonly accepted in influential studies on non-coding RNA-
related researches such as CPPred [52], LncFinder [55], LncADeep
[59], Seq-SymRF [62], PmliPEMG [63] and NCResNet [64]. The
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Table 1. Comprehensive strategy of RNA intrinsic features applied in this study

Feature group (type) Feature subgroup Number of features

Codon-related (sequence-intrinsic) Fickett score 1
Stop codon-related properties 4

ORF-related (sequence-intrinsic) Basic ORF properties 4
EDP scores on ORF 20
Hexamer scores on ORF 7

GC-related (sequence-intrinsic) GC content properties 7
Transcript-related (sequence-intrinsic) UTR-related properties 4

Basic transcript property 1
K-mer (k = 3) 64
CTD descriptors 30
EDP scores on transcript 20
Hexamer scores on transcript 7

Physicochemical property (physico-chemical) Pseudo-protein properties 5
EIIP spectrum scores 8

Secondary structure (secondary structural) Multi-scale secondary scores 6
Secondary structure descriptors 3

detailed information and concrete calculation procedure of the
features are illustrated in Supplementary Method 1, available
online at http://bib.oxfordjournals.org/.

Novel architecture of the applied deep learning
strategy
Nowadays, DL belonging to machine learning (ML) has become
a popular technique for many complicated problems in the
field of biochemistry and molecular biology [65–70]. Classical
DL methods such as CNN have been used for Euclidean structure
data and achieved great success [71–74]. However, most biological
data such as protein–ligand interaction network are from non-
Euclidean spaces in the practical applications [75], where classical
ML and DL models might be unsuitable [76]. As one of the most
emerging methods initially created to deal with non-Euclidean
data [77, 78], GNN has made remarkable achievements in single-
cell classification [79], RNA–protein interaction prediction [27],
synthetic lethality prediction [80], polypharmacy side effect
prediction [81], lncRNA target prioritizing [82] and so on.

Therefore, ncRNAInter optimizes a graph neural network
framework of GraphSAGE [83] incorporating information leak
avoidance and non-linear updating, in order to fully capture
the RNA feature information and RNA interaction knowledge
to predict LMIs. As illustrated in Figure 1, ncRNAInter mainly
consists of four components:

RNA feature encoding and graph building
ncRNAInter encodes all RNAs into feature vectors in 191 dimen-
sions based on the comprehensive strategy for RNA represen-
tation, as illustrated in Figure 1A. Based on benchmark 1, ncR-
NAInter builds a graph consisting of 1765 nodes (266 miRNAs
and 1499 lncRNAs) and 24 840 edges (24 840 interactions). Node
representations are set as corresponding RNA feature vectors.
Edge weights are set as ‘1’ when the interaction is positive but
‘0’ when the interaction is negative or indeterminate.

Message transmission and non-linear node updating
This process mainly contains two modules, one is neighbor sam-
pling and information aggregating and the other is non-linear
node updating, as illustrated in Figure 1B.

When dealing with a specified edge ij, node i and node j will
be activated to sample their source nodes as neighbors for mes-
sage transmission. The linked neighbors N(i) will multiply their
respective node features hk−1

N(i) with the corresponding edge weights
wE(i), and the calculation result will be considered as the neighbor
messages mk−1

N(i) for node i (1).

mk−1
N(i) = hk−1

N(i) × wE(i) (1)

Then, node i’s feature hk−1
i together with neighbor messages

mk−1
N(i) will be put into an optional reduce function AGG( ), such

as SUM (summing all messages), MEAN (taking the average of
all messages), MAX (picking the max of all messages) and MIN
(picking the min of all messages) (2).

ak
i = AGG

(
hk−1

i , mk−1
N(i)

)
(2)

The aggregated messages ak
i will further be processed by a

learnable neural network for non-linear node updating. The out-
put hk

i will be regarded as the updated hidden feature of node i
(3):

hk
i = ReLU

(
Wk−1ak

i + bk−1
)

(3)

Edge embedding classifier
As illustrated in Figure 1B, by concatenating the updated hidden
features of the two linked nodes, the embedding of the spec-
ified interaction (edge) f k

ij could be defined and then put into
a learnable fully connected neural network. Finally, the two-
class classification is conducted by calculating the probability of
different categories. Cross entropy loss is employed to measure
the probability distribution of the model assessments (4).

H
(
p, q

) = −
∑

i=(pos,neg)

p(i) log q(i) (4)

Information leak avoidance
In the process of graph learning, the problem of information leak
may arise in some cases, which could result in possibly over-
estimated performances. For example, the message transmitted
from edge ji will carry knowledge that should not have been
exposed to its reverse edge ij. In addition, validation data could
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Figure 1. ncRNAInter workflow. (A) ncRNAInter first encodes all RNAs into feature vectors as node representations, based on RNA sequence-intrinsic,
physico-chemical and secondary structural properties. When dealing with the interaction between RNA i and j, ncRNAInter conducts multiple iterations
of neighbor sampling to construct a subgraph of edge ij for further processing. (B) All messages of neighbors are aggregated after sampling to be learned
by a fully connected neural network. Updated node features will then be concatenated for edge classification. In order to avoid the risk of information
leak, the reverse edge will be excluded and information in validation dataset will be cleared while training in each CV round.

be divulged through neighbor sampling in the training process of
the cross-validation (CV) procedures [27]. In order to avoid the risk
of information leak, when dealing with one edge, its reverse edge
will be excluded. Additionally, information of edges belonging to

validation dataset will be cleared in the process of aggregating and
updating in each CV round. These measures ensure that no leaked
information will be transmitted and exposed during the process
of graph learning.
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Parameter calibrations and model implementations
After multiple pre-trainings and adjustments, the number of
the iterations of message transmission and node updating was
set to ‘2’ and the reduce function for information aggregation
was set as MEAN. Softmax function was adopted as the
activation function of the final layer for edge classifier [79].
Adaptive momentum estimation optimization (Adam) was
adopted to optimize the GNN model [79]. Hyperparameters of
learning rate and hidden dimension were set to 0.0005 and
256, as illustrated in Supplementary Figure 1, available online
at http://bib.oxfordjournals.org/.

Experimental setup, evaluation criteria and
system deployment
Stratified 5-fold CV was employed to evaluate the performance of
ncRNAInter. In stratified 5-fold CV, the datasets are divided into
five groups with the distribution of positive and negative samples
as close as possible. In each CV round, one group is treated as
validation set in rotation, while the other four are collected as
training set.

The performance of ncRNAInter was evaluated according to
the average values of accuracy (ACC), Matthews correlation coeffi-
cient (MCC), precision (PRE), recall (REC), specificity (SPC), F1 score
(F1), area under the curve of receiver operating characteristic
curve (AUROC) and precision-recall curve (AUPRC) [33] among
5-fold CVs. ncRNAInter is mainly implemented by pytorch 1.7.1
(https://pytorch.org/), scikit-learn 0.24.1 (https://scikit-learn.org/
stable/) and dgl 0.6.1 (https://www.dgl.ai/). All scripts were written
by Python 3.8.8. ncRNAInter was deployed on the computer with
Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz, NVIDIA(R) Tesla(R)
P100 16GB GPU and 263GB RAM on CentOS Linux release 7.9.2009
(Core).

Results and discussion
Evaluation of the predictive performance of
ncRNAInter
ncRNAInter achieved satisfying performance with the average
ACC of 0.9309, MCC of 0.8619, precision of 0.9342, recall of 0.9272,
specificity of 0.9346, F1 score of 0.9307, AUROC of 0.9715 and
the AUPRC of 0.9741 among 5-fold CVs on benchmark 1 for
human LMI prediction, as the blue bar shown in Figure 2. We
then used our testing dataset to evaluate our method, whose
results achieved good robustness with the average ACC of 0.9251,
MCC of 0.8504, precision of 0.9144, recall of 0.9380, specificity of
0.9122, F1 score of 0.9260, AUROC of 0.9726 and the AUPRC of
0.9748 among 5-fold CVs, as illustrated in Supplementary Table 2,
available online at http://bib.oxfordjournals.org/. The standard
deviations of all metrics among 5 folds turned out to be minimal,
which further illustrated the stability of our method.

Moreover, since ncRNAInter built the original graph with all
LMIs from benchmark 1 for training and validation, it is sus-
pectable that validation datasets could be divulged in the training
process. In this study, to avoid the risk of information leak and
the possibly overestimated performances, the model will clear
the information of LMIs from validation dataset in the process of
aggregating and updating, as illustrated in Figure 1B. To further
illustrate the influence of this measure, the training process of
ncRNAInter with and without information leak avoidance was
compared. As illustrated in Figure 3, the leaked information of
validation data observably resulted in the inflated ACC values and

a faster convergence speed while training, which amply demon-
strates the necessity of information leak avoidance.

Graph neural network model contributes to LMI
prediction
To probe the influence of the GNN framework applied in this study
upon LMI prediction, we compared ncRNAInter with other classic
machine learning methods including Support Vector Machine
(SVM), Random Forest (RF) and CNN using the same strategy
for RNA representation based on benchmark 1. The construc-
tions of the classic machine learning methods used in this study
are illustrated in Supplementary Method 2, available online at
http://bib.oxfordjournals.org/. As shown in Figure 2, ncRNAInter
made significant improvements among all metrics compared to
these classic models.

Through such comparison, it is found that ncRNAInter using
GNN model significantly improved the performance of LMIs pre-
diction. The reasons may include but are not limited to the follow-
ing analysis. First, the inputted RNA features were encoded from
general perspectives, which lead the GNN model to learn from
comprehensive RNA representations. This abundant information
of RNA ensures that the GNN model will not miss any important
factors for LMI and could fully extract RNA representations at
high levels of abstraction through graph learning [84]. Second, the
GNN model has an advantage in extracting the information of
neighbor RNAs, allowing each RNA to use different parameters
to weigh the information of its different neighbors. By extrapolat-
ing this strategy to more iterations between neighbor RNAs, the
GNN model can learn edge- and neighbor-dependent weights to
capture local detail [85], which further enriched the surrounding
information of RNAs in the whole LMI network, and yet it was
totally neglected by other machine learning methods. All these
advantages of GNN contribute to the entire process of learning
RNAs’ intrinsic features and their surrounding information, which
greatly helps our method to capture the vital information of LMIs
and finally achieve the excellent performance in LMI prediction.

All in all, with both RNA intrinsic feature and RNA surrounding
information captured in the learning process, the GNN model
obviously contributes to LMI Prediction while using ncRNAInter.

Comprehensive strategy for RNA representation
contributes to LMI prediction
To probe the contribution of the comprehensive feature represen-
tation strategy for LMI prediction, all features used by ncRNAInter
were analyzed based on importance scores computed from the
permutation algorithm [86]. Through progressive scanning on
features of different RNAs, feature importance scores were calcu-
lated based on the estimated error increase caused by permuting
relevant feature values. The top 50 important features of lncRNAs
as well as the top 50 important features of miRNAs are shown in
Figure 4. In the case of lncRNA, ORF-related features, Secondary
structure features and transcript-related features turned out to
be the most important ones in LMI prediction, whereas physic-
ochemical property features, GC-related features, codon-related
features and transcript-related features ranked in the top in the
case of miRNA. Different categories of features prove to play a
part in different RNAs for LMI prediction, which indicates that
neglecting any types of features may negatively impact the repre-
sentation of certain types of RNAs and thereby the performance
of LMI prediction. This further confirmed the indispensability of
the comprehensive RNA representation strategy, which could help
the GNN model to learn integral information of RNAs at the very
beginning.
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Figure 2. Model performance of ncRNAInter, SVM, RF and CNN using the same RNA representation strategy and dataset. ncRNAInter achieved the best
performance among all metrics compared with the other classic machine learning methods.

All features applied in this study have been commonly
accepted in influential studies on lncRNA-related research.
For example, CPPred applied some types of features (including
ORF related features, CTD related features) to identify coding
potential in lncRNA and mRNA [52]. LncADeep applied some
types of features (including UTR-related features, GC-related
features, secondary structure-related features) to identify lncRNA
and predict lncRNA–protein interactions [59]. LncFinder applied
some types of features (including k-mer features, hexamer-
related features, EIIP-related features) to discriminate lncRNA
and mRNA [55]. NCResNet applied some types of features
(including pseudo-protein features, Fickett score, codon-related
features) to distinguish ncRNA and pcRNA [64]. However,
some feature calculations might be deemed inappropriate for
miRNA representation. For example, ORF-related features are
commonly unable to be calculated on miRNA because of its
short sequence (approximately 18–25 nucleotides in length)
[87], and secondary structure features are more frequently
used on the representation of pre-miRNA rather than mature
miRNA in existing researches [62, 88, 89]. Therefore, two extra
models were trained separately for appraising the influence of
inappropriate feature calculations and comparing with the model
using secondary structure features calculated on pre-miRNA.
The first model excluded the inappropriate feature calculations
of miRNA containing stop codon-related features, UTR-related
features, pseudo-protein features, ORF-related features and
secondary structure features; the second model used secondary
structure features calculated on precursor sequences of miRNA.
As a result, two extra models performed equally to the original
model, as shown in Supplementary Figure 2, available online at
http://bib.oxfordjournals.org/. The result of the first model indi-
cates that since GNN can automatically sort out both contributory
and inessential factors for LMI prediction, the ncRNAInter can
restrict the influence of the features that have limited help for LMI
prediction in the process of training, so that they won’t interfere
the LMI prediction; the result of the second model indicates that
the choice of whether to use pre-miRNA or mature miRNA to

calculate the secondary structure features does not have impact
on LMI prediction. Therefore, the original calculation is applied,
which can save the trouble of manual feature selection and pre-
miRNA data preparation for the convenience of users, meanwhile
maintaining the best predicting performance.

All in all, the integral RNA feature encoding is essential for LMI
prediction and certain inappropriate feature calculations have
little impact on model performance. Based on that, ncRNAInter
eventually applies the comprehensive strategy for RNA represen-
tation, significantly improving the prediction of LMIs meanwhile
ensuring the credibility and rationality of our method.

Comparison between ncRNAInter and existing
methods
Here, ncRNAInter was tested to compete its performance with
state-of-the-art methods, to assess the improvements of this new
AI method made in predicting LMIs. The mainstream of most
reputable methods for LMI prediction mainly included EPLMI [36],
GBCF [31], SLNPM [37], GCLMI [38], LNRLMI [39], LMNLMI [40],
GEEL [41], LncMirNet [32], LMI-INGI [42], PmliPred [33] and preMLI
[35]. However, only four methods, LncMirNet [32], LMI-INGI [42],
PmliPred [33] and preMLI [35], were accessible and repeatable
for LMI prediction by far. In order to compare their performance
with ours, the exact same human LMIs data (benchmark 1) were
used to train LncMirNet, LMI-INGI, PmliPred (human) and preMLI
(human). Their average ACC, MCC, precision, recall, specificity, F1
score, AUROC and AUPRC among 5-fold CVs were inspected with
emphasis. As shown in Table 2a, ncRNAInter made significant
improvements being 13.8% superior at ACC, 26.7% at MCC, 17.1%
at precision, 4.9% at recall, 17.4% at specificity, 12.5% at F1 score,
8.2% at AUROC and 9.6% at AUPRC to the best one of four tools.
All in all, ncRNAInter achieved remarkable superiority among all
metrics compared to currently accessible methods.

Therefore, it can be concluded that ncRNAInter is a competent
and rather competitive method in LMI prediction. In this study, not
only the well-trained model is provided, but also our source code
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Figure 3. Comparison between the training process of ncRNAInter with and without information leak avoidance. In the process of model training, the
model without information leak avoidance showed faster training loss reduction and validation ACC increase. Our strategy successfully precluded the
model from this inflated consequence.

Table 2. The performance of ncRNAInter and other repeatable state-of-the-art methods using the benchmark datasets

ACC MCC PRE REC SPC F1 AUROC AUPRC

(a)
ncRNAInter 0.9309 0.8619 0.9342 0.9272 0.9346 0.9307 0.9715 0.9741
preMLI 0.8178 0.6394 0.7866 0.8724 0.7633 0.8273 0.8979 0.8888
PmliPred 0.8001 0.6801 0.7979 0.8040 0.7962 0.8008 0.8506 0.8515
LMI-INGI 0.6916 0.4427 0.6809 0.8842 0.5046 0.7422 0.8906 0.8729
LncMirNet 0.5479 0.0961 0.5000 0.5471 0.5489 0.5473 0.5693 0.5706

(b)
ncRNAInter 0.9429 0.8862 0.9345 0.9528 0.9331 0.9435 0.9863 0.9869
PmliPred 0.9191 0.8511 0.9178 0.9228 0.9155 0.9193 0.9682 0.9607

(c)
ncRNAInter 0.9604 0.9211 0.9504 0.9716 0.9492 0.9608 0.9855 0.9809

All methods were assessed based on 5-fold CV, and the performances reported were the average values among five CVs. The results of ncRNAInter were
indicated in boldface. ACC, accuracy; MCC, Matthews correlation coefficient; PRE, precision; REC, recall; SPC, specificity; F1, F1 score; AUROC, area under the
curve of receiver operating characteristic; AUPRC, area under the precision-recall curve. (a) Comparing ncRNAInter with LncMirNet, LMI-INGI, PmliPred and
preMLI by repeating them based on the dataset of benchmark 1 for human LMI prediction. (b) Comparing ncRNAInter with PmliPred by repeating them based
on the dataset of benchmark 2, which was originally reported in PmliPred for plant LMI prediction. (c) The performance of ncRNAInter trained on benchmark 3
for virus-related LMI prediction.
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Figure 4. Rankings of feature importance of miRNA and lncRNA with top 50 important features presented. Different categories of features were found
to play a part in different RNAs for LMI prediction, which indicated the indispensability of the comprehensive RNA representation strategy.

and datasets are completely released for users to fully repeat and
utilize. It is believed that ncRNAInter has a very strong impetus
for follow-up research.

Applying ncRNAInter to predicting LMIs from
various species
All the previous discussions were focused on human LMIs. We are
also intrigued to find out whether our method worked well on
the LMI prediction for other species. To ulteriorly inspect these
capabilities of ncRNAInter, the method was employed to predict
LMIs associated with plants and viruses.

Application of ncRNAInter in plant LMIs
In order to evaluate the application possibility of ncRNAInter
in plant LMI prediction, plant LMI data (benchmark 2) derived
from the same dataset constructed by PmliPred [33] were used
to train ncRNAInter (plant). As reported, PmliPred is a reputable
tool originally for predicting plant LMIs. It has strong capability
of predicting LMIs for plants and it is necessary to completely
repeat PmliPred for comparison. As shown in Table 2b, ncRNAIn-
ter (plant) achieved better performance than PmliPred (plant) did
with ACC of 0.9429, MCC of 0.8862 and AUROC of 0.9863 while
the latter achieved ACC of 0.9191, MCC of 0.8511 and AUROC of

0.9682. Moreover, the results of the PmliPred (plant) were rather
close to its reported results in original publication with deviations
of ACC being approximately 1%, which was basically the same
and further illustrated the reproducibility and reliability of this
method. Such repeatable tools are demanded in the academic
field because their ability to facilitate subsequent reconstruction
and utilization for researchers. However, in this case, ncRNAInter
still achieved modest improvement of about 1–5%, which convinc-
ingly proved its potential to play a role in the LMI prediction for
plants.

Application of ncRNAInter in virus-related LMIs
In the pursue of evaluating the application possibility of ncRNAIn-
ter in broader fields, another attempt of applying the method to
predict the interactions between virus miRNA and host (H. sapiens)
lncRNA was carried out. In this study, virus LMI data (benchmark
3) were used to train ncRNAInter (virus). As shown in Table 2c,
ncRNAInter (virus) achieved ACC of 0.9604, MCC of 0.9211 and
AUROC of 0.9855. Although there were no methods originally
designed for virus-related LMI prediction available so far to statis-
tically compare with, the satisfying results of ncRNAInter (virus)
sufficed to show the competency of our method to predict virus-
related LMIs.
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Table 3. Examples of new LMIs identified in this study associated with various diseases which were experimentally validated in
publications

Disease lncRNA (gene name) miRNA Reference

Alzheimer’s disease ENST00000501122.2 (NEAT1) miR-16 [90]
ENST00000501122.2 (NEAT1) miR-195
ENST00000501122.2 (NEAT1) miR-15a
ENST00000425595.5 (HOTAIR) miR-107
ENST00000453875.5 (HOTAIR)
ENST00000554988.1 (Rpph1) miR-122

Parkinson’s disease ENST00000537068.5 (SNHG1) miR-7
ENST00000537925.5 (SNHG1)
ENST00000545688.5 (SNHG1)
ENST00000540865.5 (SNHG1)

Multiple sclerosis ENST00000425595.5 (HOTAIR) miR-136-5p
ENST00000453875.5 (HOTAIR)

Colorectal cancer ENST00000602587.5 (XIST) miR-133a-3p [95]
ENST00000417942.5 (XIST)
ENST00000437681.1 (SNHG3) miR-539 [96]

Breast cancer ENST00000449469.5 (SNHG17) miR-124-3p [97]
ENST00000424235.1 (SNHG17)
ENST00000414142.5 (SNHG17)

Gallbladder cancer ENST00000411861.5 (H19) miR-342-3p [98]
ENST00000412788.5 (H19)
ENST00000436715.5 (H19)

Prostate cancer ENST00000453875.5 (HOTAIR) miR-193a [99]
ENST00000425595.5 (HOTAIR)
ENST00000424518.5 (HOTAIR)

Ovarian cancer ENST00000456876.1 (HOXD-AS1) miR-186-5p [100]
ENST00000436126.5 (HOXD-AS1)
ENST00000425005.5 (HOXD-AS1)

Endometrial cancer ENST00000501122.2 (NEAT1) miR-361 [101]
Cholangiocarcinoma ENST00000424518.5 (HOTAIR) miR-204-5p [102]

ENST00000425595.5 (HOTAIR)
ENST00000453875.5 (HOTAIR)
ENST00000427868.6 (LINC00665) miR-424-5p [103]
ENST00000590622.5 (LINC00665)

All in all, our method proved its superiority and universality to
conduct LMI prediction for various species, greatly broadening its
application scenarios for LMI prediction.

Discovery of new LMIs from various disease
benchmarks
The primary goal of our method is to discover new LMIs that were
previously unknown or mistakenly categorized and then guide
further downstream studies. Thus, we carried out two analyses
based on benchmark 1 to predict unknown interactions involved
in neurodegenerative diseases (NDDs) and cancers using well-
trained ncRNAInter.

Moreno-García et al. [90] had reviewed the NDD-associated
miRNA–ceRNAs networks experimentally validated to date and
reported 74 related lncRNA/miRNA axes, where we screened out
13 axes whose information was excluded in our original training
and validation datasets, as illustrated in Supplementary Table 3,
available online at http://bib.oxfordjournals.org/. These axes
were appraised by the well-trained ncRNAInter. As a result,
the model identified 12 new LMIs, including NEAT1/miR-16,
NEAT1/miR-195, NEAT1/miR-15a, HOTAIR/miR-107, Rpph1/miR-
122 in Alzheimer’s disease (AD) [91, 92], SNHG1/miR-7 in
Parkinson’s disease (PD) [93] and HOTAIR/miR-136-5p in mul-
tiple sclerosis (MS) [94], as illustrated in Table 3. In addi-

tion, as illustrated in Supplementary Table 3, available online
at http://bib.oxfordjournals.org/, 22 cancer-associated lncR-
NA/miRNA axes whose information was excluded in our original
training and validation datasets were obtained through a pre-
liminary literature survey. These experimentally validated axes
were appraised by the well-trained ncRNAInter. As a result, the
model identified 21 new LMIs, including XIST/miR-133a-3p and
SNHG3/miR-539 in colorectal cancer [95, 96], SNHG17/miR-124-
3p in breast cancer [97], H19/miR-342-3p in gallbladder cancer
[98], HOTAIR/miR-193a in prostate cancer [99], HOXD-AS1/miR-
186-5p in ovarian cancer [100], NEAT1/miR361 in endometrial
cancer [101], HOTAIR/miR-204-5p and LINC00665/miR-424-5p in
cholangiocarcinoma [102, 103], as illustrated in Table 3.

Through these analyses, ncRNAInter has proved its effective-
ness to identify LMIs associated with various major diseases.
Moreover, we took a further step to evaluate the ability of ncR-
NAInter to predict unexplored LMIs associated with cancer by
conducting another practical application. We organized the data
of the 20 different miRNAs included in the 22 cancer-related
lncRNA/miRNA axes mentioned above to predict all potential
LMIs of the 20 miRNAs. As a result, excluding 1950 LMIs originally
existing in the datasets, 2422 novel interactions were predicted as
positive interactions out of a total of 29 980 potential LMI pairs,
which implies there are a great amount of unknown LMIs to be
experimentally validated.
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All in all, by predicting the potential LMIs, ncRNAInter is able
to identify the most possible interactions, helping researchers
sort out candidates to perform further experimental validations,
which substantially reduces their original workload. In this case,
our method will provide insights and draw directions to discover
novel LMIs.

Conclusion
In this study, we proposed a novel method, ncRNAInter, which
was applied to identify new LMIs. It proposed an innovative com-
prehensive strategy for RNA representation and utilized graph
neural network algorithm to conduct feature propagation and
aggregation, contributing to LMI prediction. ncRNAInter achieved
superior performance and robustness compared with existing
methods, meanwhile ensuring the credibility and rationality of
its algorithm. Moreover, ncRNAInter has universal applicability
in various species, which is considered to have the potential to
play a role in numerous application scenarios of LMI prediction. In
addition, a certain number of novel LMIs associated with various
major diseases were successfully identified, which verified its
effectiveness and usability. Nevertheless, limited by the lack of
experimentally validated data, future works of the experimental
identification on unknown LMIs need to be put on schedule.
In all, ncRNAInter, with its outstanding performance and broad
applicability, has the potential to predict possible LMIs, giving
insights into future research.
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