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Abstract

Due to its promising capacity in improving drug efficacy, polypharmacology has emerged to be a new theme in the drug discovery
of complex disease. In the process of novel multi-target drugs (MTDs) discovery, in silico strategies come to be quite essential for
the advantage of high throughput and low cost. However, current researchers mostly aim at typical closely related target pairs.
Because of the intricate pathogenesis networks of complex diseases, many distantly related targets are found to play crucial role in
synergistic treatment. Therefore, an innovational method to develop drugs which could simultaneously target distantly related target
pairs is of utmost importance. At the same time, reducing the false discovery rate in the design of MTDs remains to be the daunting
technological difficulty. In this research, effective small molecule clustering in the positive dataset, together with a putative negative
dataset generation strategy, was adopted in the process of model constructions. Through comprehensive assessment on 10 target pairs
with hierarchical similarity-levels, the proposed strategy turned out to reduce the false discovery rate successfully. Constructed model
types with much smaller numbers of inhibitor molecules gained considerable yields and showed better false-hit controllability than
before. To further evaluate the generalization ability, an in-depth assessment of high-throughput virtual screening on ChEMBL database
was conducted. As a result, this novel strategy could hierarchically improve the enrichment factors for each target pair (especially for
those distantly related/unrelated target pairs), corresponding to target pair similarity-levels.

Keywords: enrichment factor, virtual screening, false discovery rate, quantitative structure–activity relationship (QSAR), dual inhibitor,
polypharmacology

Introduction
Due to its promising capacity in improving drug efficacy, polyphar-
macology has emerged to be a new theme in the drug discovery
of complex disease [1, 2]. The multi-target drugs (MTDs) are often
some pharmacologically complexes with pleiotypic actions, that
is, they act as ‘magic shotguns’ [3–5]. A multitude of strategies
have thus been applied to identify MTDs [6, 7], which include
natural product-based discovery [2, 8], rational drug design [9,
10], cell-based screening [11] and so on. Apart from these exper-
imental approaches, in silico strategies have become essential
in the discovery of novel MTDs for advantage of high through-
put and low cost [12–16]. Particularly, lots of computational and
bioinformatic techniques have been constructed, such as molec-
ular docking, quantitative structure–activity relationship (QSAR),
pharmacophore modeling and virtual screening [13, 14, 17–21].
As a result, the widespread application of these techniques has
contributed to the discovery of novel MTDs for various diseases
[3, 22–25].

The successful application of these computational methods is
greatly affected by the problem of false discovery rate [26–29].
Taking the virtual screening as an example, this technique aims
at identifying therapeutic target candidates from large compound
libraries, and the high false discovery is frequently encountered
[28, 30–32]. To cope with the problem, recent studies mainly

focus on (a) enriching screening library [33, 34], (b) systematically
assessing the target flexibility and the environmental factor [35,
36], (c) improving the automatic analysis of the docking poses [37],
(d) using a variety of model-building parameters [38, 39] and (e)
assembling multiple effective techniques [24, 40]. These studies
thus have significantly decreased the false discovery of MTD
candidates, which directly or indirectly accelerate the approval of
new MTDs in the past score years [2, 5–7, 27–29].

However, current researches of MTDs mostly aim at dual
inhibitors that targeting typical closely related pairs [22, 41–
44]. That is to say, the majority of these studied target pairs
belong to the similar protein biochemical-family, such as EGFR-
HER2 (targeted by Afatinib), CDK4-CDK6 (targeted by Palbociclib)
and VEGFR2-FGFR1 (targeted by Lenvatinib) [45–47]. The close
similarity-levels of these well-studied target pairs, to some extent,
reflect the difficulty in the design of MTDs targeting distantly
related target pairs [48, 49]. Due to the intricate pathogenesis
networks of complex diseases, a variety of distantly related targets
are found to play a crucial role in the synergistic treatment [50–
54]. As shown in Table 1, the SERT and 5HT1A are distantly related
target pair, and both are reported as targets for the treatment
of depression [55, 56]. It could demonstrate a rapid onset of
curative actions as well as lesser sexual dysfunction when they
are targeted simultaneously [55, 56]. Analogously, TXA2R and
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Table 1. The detailed information of combination therapy significance for 10 collected target pair (such as adaptation disease,
mechanism of action and side effect). According to this investigation, inhibiting both targets in each pair simultaneously would
produce an anticipated therapeutic effect

Target pair Significance for combination therapy Reference

SERT
NET

A multi-target strategy with therapeutic synergy is the basis for developing dual
SERT/NET inhibitor as antidepressant drug with longer half-life of the
neurotransmitter and enhanced therapeutic effect.

JAMA Psychiatry. 74: 1011–20, 2017.
Ann Intern Med. 171: 906–15, 2019.

EGFR
HER2

Cancers that co-overexpress EGFR/HER2 have a worse outcome than those
overexpress either receptor alone. There is increasing evidence to support the
concurrent inhibition of these two receptors.

Nat Rev Cancer. 21: 181–97, 2021.
Cancer Res. 77: 2712–21, 2017.

LCK
SRC

This homologous kinase pair, LCK/SRC is frequently co-expressed or co-activated in
various cancers and have an abundant number of dual inhibitors.

J Am Chem Soc. 135: 14741–53, 2013.
Cell. 182: 855–71, 2020.

OPRD1
OPRM1

The therapeutic index for mixed-action of OPRD1/OPRM1 compounds is likely
larger than that of either agonist alone, and thus represents an enhanced safety
profile of chronic pain and other pathologies.

Sci Adv. 5: eaax9115, 2019.
Neuron. 98: 90–108, 2018.

CAPN1
CTSB

The dual inhibitors of CAPN1/CSTB have long been proposed as therapeutics for the
treatment of neurodegenerative diseases, due to the neuroprotective effect of
synthetic chalcone derivatives.

Acta Pharm Sin B. 5: 506–19, 2015.
Eur J Med Chem. 121: 433–44, 2016.

CAPN2
CTSB

CAPN2/CSTB are observed to work together to mediate cell death. Inhibiting both
targets activity concurrently can attenuate significant cell death in cell lines,
showing therapeutic potential in prostate cancers.

Cell Death Differ. 22: 476–87, 2015.
Prog Neurobiol. 105: 1–23, 2013.

SERT
5HT1A

Multi-target drugs simultaneously targeting both SERT/5HT1A demonstrate a rapid
onset of actions and lesser sexual dysfunction in the treatment of depression.

Pharmacol Ther. 145: 43–57, 2015.
Br J Pharmacol. 174: 769–80, 2017.

SERT
H3R

Pre-clinical studies suggest a SERT/H3R dual inhibitor may have utility as an
antidepressant therapy since they demonstrated both pro-cognitive and
wake-promoting effects.

J Neurosci. 41: 6564–77, 2021.
Nat Rev Neurosci. 14: 472–87, 2013.

ADAM17
MMP9

ADAM17/MMP9 both contribute to joint destruction and therefore their therapeutic
synergy can provide an advantage for the treatment of rheumatoid arthritis.

Nat Rev Nephrol. 17: 513–27, 2021.
J Inf lamm Res. 14: 2353–61, 2021.

TXA2R
TXS

Platelet functional activation is associated with TXA2R/TXS, and inhibiting both
targets at the same time makes it more effective in reducing overall mortality in
diabetic patients with peripheral arterial disease.

Thromb Haemost. 120: 329–43, 2020.
Pharmacol Ther. 193: 1–19, 2019.

Abbreviations for target in each pair: 5HT1A: serotonin receptor 1A; ADAM17: TNF-alpha-converting enzyme; CAPN1: calcium-activated neutral proteinase 1;
CAPN2: calcium-activated neutral proteinase 2; CTSB: cathepsin B; EGFR: epidermal growth factor receptor; H3R: histamine H3 receptor; HER2: proto-oncogene
c-ErbB-2; LCK: tyrosine-protein kinase Lck; MMP9: matrix metalloproteinase-9; NET: norepinephrine transporter; OPRD1: delta-type opioid receptor; OPRM1:
Mu-type opioid receptor; SERT: serotonin transporter; SRC: proto-oncogene c-Src; TXA2R: thromboxane A2 receptor; TXS: thromboxane-A synthase.

TXS are structurally identified as two thoroughly unrelated
therapeutic targets associated with platelet activation [50, 54].
Inhibiting both targets at the same time makes it more effective
in reducing overall mortality in diabetic patients with peripheral
arterial disease [50, 54].

Therefore, an innovational strategy to discovery drugs which
could simultaneously target these distantly related target pairs is
of utmost importance. In the meantime, how to reduce the false
discovery rate in the design of MTDs remains to be a daunting
technological difficulty [28, 30–32]. To the best of our knowledge,
no such strategy has been proposed to effectively control the false
discovery in such MTD development so far.

In this study, combinatorial support vector machine (CSVM)
models were developed to identify MTDs. An effective strategy of
small molecule clustering in the positive dataset followed with
putative negative dataset generation was adopted in the process
of model constructions. Through comprehensive assessment
of 10 target pairs with hierarchically different similarity-levels,
the proposed strategy was proved to successfully reduce the
false discovery. Certain model types constructed with much
fewer inhibitor molecules gained considerable yields and showed
better false-hit controllability than before. To further evaluate
the generalization ability of the proposed strategy, an in-depth

assessment of high-throughput virtual screening on ChEMBL
database [57] was conducted. Consequently, this novel strategy
made hierarchically improvement of enrichment factors (EFs) for
all 10 target pairs (especially for those distantly related/unrelated
target pairs), which was corresponding to the similarity-levels of
these target pairs.

Materials and methods
Target pairs collection
In this study, 10 therapeutic target pairs were collected (Table 1)
and their similarity-levels were carefully defined. The defini-
tion criteria are further illustrated in Table 2 and its correspond-
ing Results and Discussion part. For each target pair, inhibit-
ing both targets simultaneously would produce more efficient
treatment effects or less side effects than single inhibition only
[50–56, 58–70]. The detailed information of combination therapy
significance for 10 collected target pair is provided in Table 1.
The similarity-level of each collected target pair was assessed
by (1) sequence similarity between the drug-binding domains
(DBDs) of two targets and (2) the structural classification of
DBDs based on the SCOPe database (Structural Classification of
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Table 2. The levels of similarity of 10 target pairs studied in this work as assessed by (1) sequence similarity between the drug-binding
domains (DBDs) of two targets in each pair and (2) structural classifications of their DBDs based on SCOPe. As a result, those studied
target pairs were classified into four groups (Closely related, Related, Distantly related, Unrelated), and different classifications were
highlighted in bold

Target
pair

Level of
similarity

DBD Family
(Sequence Region)

DBD BLAST
E-value

Structural classification of DBD based on SCOPe [71 [ (SCOPe ID)

Class Fold Superfamily Family

SERT
NET

Closely
related

SNF (79–600)
SNF (56–580)

0.00E+000 Membrane (56835) SNF (161069) SNF (161070) SNF (161071)

EGFR
HER2

PkinaseTyr (712–968)
PkinaseTyr (720–976)

4.76E-166 Alpha&Beta (53931) Protein Kinase (56111) Protein Kinase (56112) Protein Kinase
Catalytic (88854)

LCK
SRC

PkinaseTyr (245–494)
PkinaseTyr (270–519)

1.07E-134 Alpha&Beta (53931) Protein Kinase (56111) Protein Kinase (56112) Protein Kinase
Catalytic (88854)

OPRD1
OPRM1

GPCR (66–318)
GPCR (87–338)

1.13E-134 Membrane (56835) GPCRA (81322) GPCRA (81321) Rhodopsin (81320)

CAPN1
CTSB

Related PeptidaseC2 (56–352)
PeptidaseC1 (80–329)

8.00E-003 Alpha&Beta (53931) Cysteine Proteinase
(54000)

Cysteine Proteinase
(54001)

Calpain (54040)
Papain (54002)

CAPN2
CTSB

PeptidaseC2 (46–342)
PeptidaseC1 (80–329)

1.10E-002 Alpha&Beta (53931) Cysteine Proteinase
(54000)

Cysteine Proteinase
(54001)

Calpain (54040)
Papain (54002)

SERT
5HT1A

Distantly
related

SNF (79–600)
GPCR (53–400)

1.80E-001 Membrane (56835) SNF (161069)
GPCRA (81322)

SNF (161070)
GPCRA (81321)

SNF (161071)
Rhodopsin (81320)

SERT
H3R

SNF (79–600)
GPCR (51–412)

4.00E-001 Membrane (56835) SNF (161069)
GPCRA (81322)

SNF (161070)
GPCRA (81321)

SNF (161071)
Rhodopsin (81320)

ADAM17
MMP9

Unrelated RepM12B (31–167)
PeptidaseM10
(115–444)

1.30E+000 Small (56992)
Alpha&Beta (53931)

BCI (57551)
Zincin (55485)

BCI (57552)
MetP (55486)

BCI (57553)
MMP (55528)

TXA2R
TXS

GPCR (41–308)
P450 (44–308)

1.70E+000 Membrane (56835)
All-Alpha (46456)

GPCRA (81322)
P450 (48263)

GPCRA (81321)
P450 (48264)

Rhodopsin (81320)
P450 (48265)

Abbreviations for DBD family and SCOPe classification: All-Alpha: all alpha protein; Alpha&Beta: alpha & beta protein; BCI: blood coagulation inhibitor;
Calpain: calpain catalytic domain; GPCR: G protein-coupled receptor; GPCRA: GPCR class A; MMP: matrix metalloprotease; Membrane: membrane and cell
surface protein/peptide; MetP: metalloprotease; Metalloprotease: metalloproteases catalytic domain; P450: enzyme cytochrome P450; Papain: papain-like
domain; PeptidaseC1: papain family cysteine protease; PeptidaseC2: calpain family cysteine protease; PeptidaseM10: matrixin family protease; PkinaseTyr:
protein tyrosine kinase; Reprolysin: reprolysin family propeptide; Rhodopsin: GPCR rhodopsin; SNF: sodium:neurotransmitter symporter; Small: small protein;
Zincin: zincin-like protein.

Proteins—extended) [71]. The sequence similarity was measured
by DBD Family (Sequence Region) and DBD BLAST E-value [72].
SCOPe was an extended database of protein structural relation-
ships (extends the SCOP), and SCOP was manually organized
hierarchy of the protein domains on the basis of the relationships
of their structure and evolution [71]. According to the diversified
assessment, those studied target pairs were divided into four
groups (closely related, related, distantly related and unrelated) based
on their similarity-levels. Detailed criteria were offered in the
target pair similarity definition section.

Dataset preparation
Target inhibitors with detailed inhibition assay information were
collected from ChEMBL database [57]. Inhibitors with IC50, EC50 or
Ki ≤ 500 nM were considered active [73, 74]. This inhibitor selection
criterion was used because it covered most of the reported high-
throughput screening (HTS) and virtual screening hits [75, 76].
These known inhibitors covered diverse sets of compound scaf-
folds [75, 76]. Some molecules might have multiple measurement
results from different assays, which might affect the efficiency
and the performance of constructed models. The duplicates were
removed and then the mean values of these measurement were
calculated.

Sufficient negative datasets played a vital role in building
reliable virtual screening models with low false hit [77–79]. But so
far, the available information of noninhibitors is extremely limited
due to the lack of related reports. Thus, a typical technology has

been developed to generate a putative negative dataset of nonin-
hibitors representing the whole inactive chemical space [80]. This
technology first grouped PubChem and MDDR compounds up to
8423 clusters (i.e. chemical-families) according to their molecular
descriptors [80–82]. For each target pair, more than 60 000 putative
noninhibitors were generated by random retrieving representa-
tives from clusters without known inhibitors. Although some yet
to be discovered active compounds were likely distributed on
noninhibitor clusters, the majority of these representatives were
supposed to be identified as noninhibitors rather than inhibitors.

Molecular descriptors encoded quantitative representations of
physicochemical and structural information of molecules, which
extensively became the support of various cheminformatic and
bioinformatic tools [83, 84]. For optimal representation of chem-
ical space covering PubChem and MDDR compounds [80–82], in
this work, a number of 98 molecular descriptors generated by
the PaDEL-descriptor software (version 2.21) were selected for
model construction (Supplementary Table S1) [85]. These descrip-
tors were formed from three chemical property descriptors, 18
simple molecular property descriptors, 35 molecular connectiv-
ity and shape descriptors as well as 42 electrotopological state
descriptors.

Model construction
For each target pair, the positive data in training datasets were
composed of single-target inhibitors (STIs), and the independent
test datasets were composed of dual-target inhibitors (DTIs).
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Figure 1. Three model types were constructed based on different datasets. All activate compounds were divided into three different datasets: (1) dual-
target active compounds against both target A and B (horizontal line in green), (2) single-target active compounds against either target A (vertical line in
blue) or target B (vertical line in red) sharing the same chemical-families and (3) single-target active compounds against either target A (dot area in blue)
or target B (dot area in red) from different chemical-families. Based on these three different datasets, three model types (M1, M2 and M3) were constructed
using datasets 2 and 3, dataset 2 only and dataset 3 only, respectively. The dataset 1 was used as the independent test data.

This study built combinatorial SVM models based on these
datasets. SVM first projects feature vectors into a high-dimensional
feature space based on the nonlinear function. Then, a hyperplane
is found to divide all candidate compounds into two groups:
inhibitors and noninhibitors. The LibSVM software was applied
to establish the v-Support Vector Classification (v-SVC) models
based on above molecular descriptors [86]. As for the parameters,
we used the Radial Basis Function kernel and the optimal penalty
coefficient C was around 1 × 105 varying from different target
pairs as well as the gamma value γ was set as auto. This process
only screened out predicted STIs for each target of the pairs; thus,
CSVM models were used to combine predicted STIs into DTIs for
specific target pair based on the intersection of predicted STIs.

In order to explore how the composition of training datasets
would influence model performance, three model types were
constructed based on different datasets. All inhibitors in datasets
were carefully identified and divided into three categories
(Figure 1): (1) DTIs against both target A and B (horizontal line
in green), (2) STIs against either target A (vertical line in blue) or
target B (vertical line in red) sharing same chemical-families, and
(3) STIs against either target A (dot area in blue) or target B (dot
area in red) from different chemical-families. The dataset 1 was
used as the independent test data. Three model types (M1, M2
and M3) were constructed using dataset 2 and 3, dataset 2 only
and dataset 3 only, respectively. The number of target inhibitors
and their chemical-families in three model types for each target
pair are provided in Table 3.

In summary, the integral workflow applied in this study is
illustrated in Figure 2. First, the compounds selectively inhibiting
either target A or target B were collected. Second, the predictive
SVM models were constructed for each target by 5-fold cross-
validation. Third, these constructed models were applied to screen
large chemical databases. Finally, the overlap between the virtual
screening results for target A and that for target B was identified
as dual-target inhibitor candidates, and then the false discovery
rate was further assessed.

Figure 2. The workflow applied in this study. First, the compounds
selectively inhibiting either target A or target B were collected. Second,
the predictive models were constructed for each target by SVM-based
5-fold cross-validation. Third, the constructed models were applied to
screen large chemical databases. Finally, the overlap between the virtual
screening results for target A and that for target B was assessed as dual-
target inhibitor candidates, and then the false discovery rate was further
assessed.

Model performance assessment
However, there were much more noninhibitors in the real world
than the inhibitors. Accordingly, in the training dataset, the num-
ber of putative negative data (>60 000) was much more than that
of positive data. Therefore, three metrics came out to be especially
important: namely sensitivity (SEN), specificity (SPE) and accuracy
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Table 3. The performances of three different models (M1, M2 and M3 constructed based on the datasets defined in Figure 1) for 10
studied target pairs, which were assessed using all corresponding dual-target inhibitors (DTIs) as the independent test dataset. STI-A:
all the studied compounds selectively inhibiting target A (inactive to target B); STI-B: all the studied compounds selectively inhibiting
target B (inactive to target A). No. of families indicated the number of chemical-families covered by the studied compounds, and the
chemical-family was defined by the systematic clustering of all compounds in PubChem database. The number of active compounds
used for constructing model M1 was the sum of corresponding model M2 and model M3. The results of model M2 were highlighted in
bold. As shown, only a very small fraction of the STI-A and STI-B was included in constructing model M2, but the predictive
performances of all M2 models were largely comparable to that of the corresponding M1 models

Target pair
(A & B)

Model No. of STI-A in
training dataset
(no. of families)

Percent of STI-A
in training
dataset

No. of STI-B in
training dataset
(no. of families)

Percent of STI-B
in training
dataset

No. of DTIs for
independent test
(no. of families)

No. of
predicted
DTIs

Yield of
DTIs

SERT
NET

M1 1469 (480) 100.0% 471 (243) 100.0% 1197 (370) 346 28.9%
M2 254 (81) 17.3% 181 (81) 38.4% 320 26.7%
M3 1215 (399) 82.7% 290 (162) 61.6% 2 0.2%

EGFR
HER2

M1 1434 (446) 100.0% 265 (117) 100.0% 625 (187) 144 23.0%
M2 257 (56) 17.9% 155 (56) 58.5% 130 20.8%
M3 1177 (390) 82.1% 110 (61) 41.5% 1 0.2%

LCK
SRC

M1 837 (324) 100.0% 1072 (347) 100.0% 285 (142) 39 13.7%
M2 372 (104) 44.4% 419 (104) 39.1% 38 13.3%
M3 465 (220) 55.6% 653 (243) 60.9% 3 1.1%

OPRD1
OPRM1

M1 277 (105) 100.0% 216 (88) 100.0% 115 (44) 31 27.0%
M2 33 (9) 11.9% 46 (9) 21.3% 26 22.6%
M3 244 (96) 88.1% 170 (79) 78.7% 5 4.3%

CAPN1
CTSB

M1 307 (155) 100.0% 270 (159) 100.0% 64 (37) 26 40.6%
M2 108 (36) 35.2% 92 (36) 34.1% 25 39.1%
M3 199 (119) 64.8% 178 (123) 65.9% 1 1.6%

CAPN2
CTSB

M1 79 (35) 100.0% 279 (171) 100.0% 55 (25) 17 30.9%
M2 48 (18) 60.8% 45 (18) 16.1% 16 29.1%
M3 31 (17) 39.2% 234 (153) 83.9% 1 1.8%

SERT
5HT1A

M1 2276 (686) 100.0% 2060 (654) 100.0% 293 (91) 147 50.2%
M2 974 (214) 42.8% 883 (214) 42.9% 130 44.4%
M3 1302 (472) 57.2% 1177 (440) 57.1% 1 0.3%

SERT
H3R

M1 2387 (697) 100.0% 2495 (581) 100.0% 170 (57) 34 20.0%
M2 612 (146) 25.6% 716 (146) 28.7% 34 20.0%
M3 1775 (551) 74.4% 1779 (435) 71.3% 1 0.6%

ADAM17
MMP9

M1 924 (356) 100.0% 1328 (541) 100.0% 274 (159) 100 36.5%
M2 504 (136) 54.5% 427 (136) 32.2% 91 33.2%
M3 420 (220) 45.5% 901 (405) 67.8% 6 2.2%

TXA2R
TXS

M1 321 (156) 100.0% 518 (206) 100.0% 73 (39) 20 27.4%
M2 22 (12) 6.9% 36 (12) 6.9% 19 26.0%
M3 299 (144) 93.1% 482 (194) 93.1% 2 2.7%

(ACC). The formulas of these metrics were given in Supplementary
Method. The 5-fold cross-validation was adopted to evaluate the
performance of each model by dividing training dataset into five
subsets. In each cross-validation step, four subsets were combined
to constitute the training dataset, and the remaining one subset
turn into the validation set. This procedure was repeated five
times until all subsets had been used for validation. The average
performance across all five trials was then calculated; detailed
statistics were offered in Supplementary Tables S2–S4.

To assess the identification ability of each constructed model,
the known DTIs for the selected target pair were utilized as the
independent test dataset. The number of predicted DTIs was
counted (as shown in Table 3), and the yield was also calculated
(namely, the percentage of known positives predicted as true
DTIs). A higher yield demonstrated better identification ability
of the model. Since the effectiveness of these three types of

CSVM models was highly associated with the quality of positive
compounds in training dataset. Thus, the numbers of compounds
together with their chemical-family numbers are also provided in
Table 3.

To further evaluate the practicability of constructed models
and identify novel hit compounds from large chemical database,
virtual screening on ChEMBL database was conducted [57, 87, 88].
ChEMBL was a manually curated database of 2.08 million bioac-
tive molecules with drug-like properties [57]. It brought together
chemical, bioactivity and genomic data to aid the translation of
genomic information into effective novel drugs [57]. One of the
useful ways to evaluate the screening power was to measure the
EF value [36, 88]. The formula of EF was given in Supplementary
Method. It indicated how many times more active compounds
would be discovered in contrast to randomly test compounds
in the library [36, 88]. Through comparing different models, the
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Table 4. Assessing the false discovery rate of each constructed model using enrichment factors (EFs). First, all compounds in the
ChEMBL database were screened using each model. The number of predicted dual-target inhibitors (DTIs) and the number of predicted
true DTIs were calculated. Second, the EF values were calculated to measure their predictive capacity over random selection. Finally, the
percent of EF increase between model M2/M3 and model M1 was provided in the last column

Target pair Model No. of
predicted DTIs

No. of predicted
true DTIs

Total no. of DTIs EF Percent of EF increase (%)
comparing to M1

SERT
NET

M1 2565 345 1197 147.6 0.0
M2 2141 318 163.0 10.4
M3 24 2 91.4 -38.0

EGFR
HER2

M1 1535 136 625 186.2 0.0
M2 1227 122 209.0 12.2
M3 23 1 91.4 -50.9

LCK
SRC

M1 2899 39 285 62.0 0.0
M2 2523 38 69.4 12.0
M3 325 3 42.5 -31.4

OPRD1
OPRM1

M1 439 23 115 598.4 0.0
M2 378 22 664.7 11.1
M3 330 1 47.6 -94.2

CAPN1
CTSB

M1 2004 26 64 266.3 0.0
M2 1484 25 345.7 29.8
M3 132 1 155.5 -41.6

CAPN2
CTSB

M1 842 17 55 482.2 0.0
M2 590 16 647.6 34.3
M3 115 1 207.7 -56.9

SERT
5HT1A

M1 6287 146 293 104.1 0.0
M2 3791 130 153.7 47.7
M3 60 1 74.7 -28.2

SERT
H3R

M1 3168 34 170 82.9 0.0
M2 2097 34 125.3 51.1
M3 105 1 73.6 -11.3

ADAM17
MMP9

M1 2009 99 274 238.1 0.0
M2 941 90 452.7 94.1
M3 168 6 293.5 -27.5

TXA2R
TXS

M1 293 20 73 1228.2 0.0
M2 138 19 2477.3 101.7
M3 53 2 679.0 -44.7

increasing rates of EF between model M2/M3 versus model M1 for
each target pair were also calculated (Table 4 and Figure 3).

Results and discussion
Target pair similarity definition
The information of combination therapy significance for each
collected target pair is provided in Table 1. Detailed description
of all pairs was reported, which include the adaptation disease,
mechanism of inhibitor action, side effect and so on. According
to this investigation, for each target pair, inhibiting both targets
simultaneously would produce an anticipated therapeutic syn-
ergy. The level of similarity of each target pair studied in this
work was carefully assessed. In Table 2, the sequence similarity
between the DBDs as well as their structural classification based
on SCOPe was provided for each target pair. In SCOPe database,
the DBDs’ structural classification has a rigid four-level hierarchy
(namely Class, Fold, Superfamily, Family) [71]. Specifically, two tar-
gets would be considered as similar target pair when their BLAST
E-value was low and the DBD structural classification was close.

As a consequence, four target pairs (SERT/NET, EGFR/HER2,
LCK/SRC and OPRD1/OPRM1) were assessed as Closely related pairs
because they all had a quite low BLAST E-value (0.00E+000,
4.76E-166, 1.07E-134 and 1.13E-134, respectively). Besides, two
DBD structures of targets in Closely related pair were classified
into the same Family [71]. Other two target pairs (CAPN1/CTSB,
CAPN2/CTSB) were assessed as Related pairs because they had
middle level of BLAST E-values (8.00E-003 and 1.10E-002, respec-
tively). The two DBD structures of targets in Related pair were clas-
sified into the same Superfamily but different Families (in Table 2,
different classifications were highlighted in bold). Another two
target pairs (5HT1A/SERT, SERT/H3R) were assessed as Distantly
related pairs because they had relatively high BLAST E-values
(1.80E-001 and 4.00E-001, respectively). The two DBD structures
of targets in Distantly related pair were classified into the same
Class but different Folds. The last two target pairs (ADAM17/MMP9,
TXA2R/TXS) were assessed as Unrelated pairs because the BLAST
E-values were very high (1.30E+000 and 1.70E+000). The two DBD
structures of targets in Unrelated pair were classified into totally
different Classes. Hereto, the concept of target pairs similarity in
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Figure 3. Increase percentages of enrichment factors (EFs) of model M2 (upper) and model M3 (lower) comparing to that of M1. The studied target pairs
were ordered by Closely related (in blue), Related (in yellow), Distantly related (in green) and Unrelated (in red). All EFs of M2 models were higher than that of
M1 models, and all EFs of M3 models were lower than that of M1 models. The M2 models displayed hierarchically enhanced EFs, corresponding to the
similarity-levels of target pairs.

this article was elaborately defined and meticulously illustrated,
which was fundamental for the following research.

Model performance evaluation
The performances of models constructed in this study were firstly
assessed by 5-fold cross-validation for parameter selection. As
illustrated in Figure 1, three model types (M1, M2 and M3) were
constructed using dataset 2 and 3, dataset 2 only and dataset
3 only, respectively. As shown in Supplementary Tables S2–S4,
based on the optimized models, sensitivity (SEN), specificity (SPE),
accuracy (ACC) and the averages of 5-folds were calculated. The
average SENs of model M1 for each target ranged from 74.55% to
94.15%. The average SEN of model M2 for each target was mainly
within the range from 70.59% to 90.08% except that of TXA2R. A
small training sample size of TXA2R inhibitors in M2 might be
the major reason for the low SEN of 62.50%. As for model M3,
the average SEN ranged from 29.66% to 91.63%. In model M3, the
5-fold cross-validation results for some targets performed poorly
(e.g. the target pair CAPN1/CTSB and 5HT1A/SERT). In addition,
all these models could achieve excellent performances in terms
of SPE and ACC (higher than 99.00%), showing their potential in
controlling the false positive rate. Notably, the model M2 outper-
formed model M1 in some cases (e.g. CAPN1/CTSB, TXA2R/TXS).
Generally, the results of 5-fold cross-validation above showed
signs that the M1 models and the M2 models were of comparative
quality, while model M3 reflected some shortcomings.

For 10 studied target pairs, the performances of three model
types (M1, M2 and M3, built on three different training datasets)
were then assessed using independent test dataset. The identi-
fication performances are illustrated in Table 3, and the results
of M2 models were highlighted in bold. For each model type, the
number of STIs for target-A (STI-A) in the training dataset was
listed, together with their percentages. So did the STIs for target-
B (STI-B). As a result, the proportion of STI-A or STI-B in training
dataset for constructing model M2 ranged 6.9–60.8% (compared
model M1). The proportion of STI-A or STI-B in training dataset
for constructing model M3 ranged 39.2–93.1% (also compared to
model M1). Besides, most M2 models’ training dataset covered
fewer number of chemical-families than that of M3 models. As
for the identification yields, both M1 models and M2 models
showed a certain ability to identify DTIs for these 10 target pairs.
Respectable yields were obtained in model M1 versus M2 for

some target pairs, such as CAPN1/CTSB: 40.6% versus 39.1%,
5HT1A/SERT: 50.2% versus 44.4%. Meanwhile, the yields of M3
models were generally knockdown (yields of all 10 target pairs
were no more than 4.3%).

Comprehensively considering the size of training dataset and
the prediction yields obtained, it would be quite surprised and
delightful to find that, although M2 models utilized a small pro-
portion of the STIs in the training dataset, their yields were
significantly close to the M1 models. Particularly, there were only
6.9% compounds for both targets (TXA2R and TXS) in the model
M2 training datasets. However, the yield reached 26.0%, quite
close to the model M1 yield 27.4%. For the target pair SERT/H3R,
although the amounts of training dataset in model M2 were only
25.6% and 28.7% (for target SERT and H3R, respectively), the yield
of model M2 arrived at 20.0%, which was the same as the yield of
model M1. Besides, for the target pair SERT/NET, the amounts of
training dataset in model M2 only occupied 25.6% and 28.7% (for
target SERT and NET, respectively) and the yield of model M2 came
to 26.7%, while the yield of model M1 was 28.9%. More detailed
information is given in Table 3.

In conclusion, only a small fraction of inhibitors were included
in constructing M2 models, the predictive performances of all
M2 models on 5-fold cross-validation and independent test were
largely comparable to that of the corresponding M1 models.

Model virtual screening
In order to assess the virtual screening capability together with
the false discovery controllability of established models in the real
world, all compounds in ChEMBL database (2.08 million in total)
were screened using every model. As shown in Table 4, the num-
bers of predicted DTIs as well as the numbers of predicted true
DTIs were counted. The corresponding EF values were calculated
to measure their predictive capacity over random selection. For
each target pair, the numbers of predicted true DTIs by M2 models
were quite close to that of M1 models. In contrast, the numbers of
predicted true DTIs by M3 models were only in the single digits.
After calculating their EF values, the M2 models exceeded the
M1 models in varying degrees, while M3 model revealed rather
poor results. The M2 models exhibited greater power to enrich
active compounds and reduce the number of molecular need
to be experimentally screened. One possible reason to explain
this phenomenon might be that, in M2 models’ training datasets,
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compounds sharing same chemical-families could encode more
crucial features and indications in some remarkable values. These
small fraction of compounds with overlapped molecule clusters,
therefore, became essential key data in seeking for new dual
target inhibitors.

The percent of EF value increasing rates between model M2/M3
and model M1 was provided in the last column of Table 4. All EF
increasing rates of model M2 versus M1 were positive digits (from
10.4% to 101.7%), while EF increasing rates of model M3 versus M1
were all negative digits (from −94.2% to −11.3%). To intuitively
present the comparison of EF variation among different model
types, an increase percentage figure of EFs of M2/M3 models com-
paring to that of M1 models was plotted (Figure 3). The studied
target pairs were ordered by their similarity-levels (closely related,
related, distantly related and unrelated). The hierarchical correla-
tion between EF increasing rates and the target pair similarity-
levels was shown quite clearly. For Closely related target pairs
(SERT/NET, EGFR/HER2, LCK/SRC and OPRD1/OPRM1) described
above, the EF increase rate ranged from 10.4% to 12.2%, indicating
that M2 models enrichment performed slightly better than M1
models. For Related target pairs (CAPN1/CTSB and CAPN2/CTSB),
the EF increase rate was 29.8% and 34.4%, displaying stronger
enrichment power. For Distantly related target pairs (5HT1A/SERT
and SERT/H3R), the EF increased significantly by 47.7% and 51.1%.
When M2 models were applied to the last Unrelated target pairs
(ADAM17/MMP9 and TXA2R/TXAS), the EF increase rate dramati-
cally reached 94.1% and 101.7%.

In this part, a large-scale virtual screening was conducted,
showing a superior generalization ability of this novel proposed
strategy. Constructed with small fractions of inhibitors, M2 mod-
els displayed hierarchically enhanced EFs, corresponding to the
similarity-levels of target pairs.

Conclusions
Nowadays, the polypharmacology is widely accepted as a ‘magic
shotgun’ approach, since one small molecule can be able to hit
several targets at once. In this study, a novel strategy for dual
inhibitor discovery was proposed with controlled false hit rate
and enhanced EF. An effective small molecule clustering method
followed with a putative negative dataset generation technique
was adopted during the CSVM model construction. Before eval-
uating the model performance, 10 target pairs with hierarchical
similarity-levels were carefully collected and arranged. Through
comprehensive assessment, this novel strategy turned out to help
gain considerable yield with much smaller number of inhibitor
molecules, which might also indicate its broad applicability. To
further evaluate the generalization ability of these models, an
in-depth assessment of high-throughput virtual screening on
the ChEMBL database was conducted. As a result, this strategy
made hierarchical improvement on the enrichment for each
target pair, corresponding to the hierarchical similarity-levels of
the target pairs. All in all, due to its outstanding performance,
we believe that this novel strategy would contribute to drug
discovery in complex diseases with intricate pathogenesis
networks.

Key Points

• This study carefully collected and arranged target
pairs with hierarchical similarity-levels, and initiatively

classified them into four groups (Closely related,
Related, Distantly related and Unrelated).

• This study proposed a novel strategy which could control
false discovery rate by adopting an effective compound
clustering method as well as a putative negative dataset
generation technique.

• This proposed strategy demonstrated an amazing
generalization ability in virtual screening large-scale
database, showing hierarchically enhanced enrichment
factor (corresponding to the similarity-levels of target
pairs).

• This proposed strategy bought out a primed ‘magic
shotgun’ especially for these distantly related or unre-
lated target pairs, contributing to drug discovery in com-
plex diseases.
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