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Abstract 

RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA / protein / compound), and 
various computational methods are a v ailable f or identifying these interactions. Ho w e v er, the encoding features pro vided b y e xisting methods are 
limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm 

for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in ( a ) realizing comprehensive RNA feature 
encoding by introducing a great many of novel features and ( b ) enabling task-specific integration of interacting partners using convolutional 
autoencoder -directed feature embedding. Compared with existing methods / tools, this novel algorithm demonstrated superior performances in 
diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https:// idrblab.org/ corain/ 
and https:// github.com/ idrblab/ corain/ . 
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Introduction 

RNAs play essential roles in diverse physiological and patho-
logical processes by interacting with other molecules, includ-
ing RNAs, proteins and compounds ( 1–4 ). Particularly, RNAs
participate in various post-transcriptional processes by bind-
ing to other RNA ( 5–8 ); RNA–protein interaction is key to
cellular homeostasis, and its perturbations can lead to cellular
dysfunction / cancerization ( 9–12 ); RNAs bind to compounds
(e.g. metabolite) to induce genetic / catalytic function varia-
tions and modulate cellular metabolism ( 13–16 ). So far, three
types of experimental method have been adopted to facilitate
the discovery of RNA-associated interactions, which included
the ‘ clustered regularly interspaced short palindromic repeat
(CRISPR)’, ‘ immunoprecipitations ’ and ‘ oligo-captures ’ ( 1 ,2 ).
Since these methods are characterized by time-consuming and
resource-intensive , the discovery of RNA-associated interac-
tions remains extremely difficult ( 17–19 ). 

With the advent of ‘ big data ’ era ( 20–22 ), various compu-
tational approaches have therefore been constructed to iden-
tify RNA-associated interactions ( 23–28 ). There are two typ-
ical steps in these approaches ( 29–33 ), which included the
encoding of interacting molecules into a set of computer-
recognizable features ( 29 ) and the integration of encoding fea-
tures between interacting partners ( 30 ). To realize the above
processes, many valuable studies have been conducted to
facilitate the encoding of RNA / protein / compound ( 34–36 )
and integration of encoding features for interacting partners
( 26 ,37 ). Particularly, a variety of functional tools have been
constructed. Some focus on predicting RNA–RNA interac-
tions (RRIs ) , such as MD-MLI ( 7 ), lncIBTP ( 38 ), PmliPred
( 6 ) and LncMirNet ( 39 ); some others aim at finding RNA–
protein interactions (RPIs), such as CatRAPID ( 10 ), PRPI–
SC ( 40 ), PLIPCOM ( 41 ) and XGBPRH ( 42 ); the remaining
tools are designed to find RNA-compound interactions (RCIs),
such as LigandRNA ( 15 ), dSPRINT ( 43 ) and RNAmigo ( 44 ).
These approaches / tools have emerged to be very popular in
various cutting-edge directions, and have attracted broad in-
terests from diverse RNA-associated communities ( 45–47 ). 

The critical features that were identified to indicate the
mechanisms underlying RNA-associated interactions were
found to be highly dependent on the studied datasets ( 48 ,49 ).
As illustrated in Figure 1 , three RRI benchmark datasets (from
Arabidopsis thaliana , Glycine max and Medicago truncatula )
were statistically analyzed (analytic details are shown in Sup-
plementary Methods), and the identified features from differ-
ent benchmarks are highly inconsistent. In other words, it is
demanded to have a comprehensive coverage of encoding fea-
tures for each RNA, and the bias towards the features identi-
fied from any of the three species will lead to a fail in discov-
ering the features for other species. Furthermore, a successful
integration of the encoding features asks for the balanced fea-
ture dimensions between different types of interacting part-
ners ( 50 ,51 ). However, the encoding features offered by ex-
isting tools are restricted to certain types ( 39–43 ), which lim-
its the comprehensiveness of encoding features. Moreover, a
simple strategy of direct concatenation is frequently adopted
by existing tools ( 39–43 ), which does not fully evaluate the
balanced feature dimensions. In other words, it is urgently
needed to have an RNA encoding method that provides not
only comprehensive coverage of encoding features but also a
concatenation strategy enabling the integration of the inter-
acting partners of balanced feature dimensions. 
In this study, a task-specific encoding algorithm for RNAs 
and RNA-associated interactions was therefore developed. As 
described in Figure 2 , this proposed algorithm is unique in 

(a) realizing a comprehensive RNA feature encoding by in- 
troducing a large number of novel features and (b) enabling 
a task-specific integration of interacting partners based on 

autoencoder-directed feature embedding. To validate the ef- 
fectiveness of this encoding algorithm, additional case studies 
were conducted. First , the performances of this algorithm for 
predicting RNA-associated interactions were assessed by well- 
established benchmarks, and systematically compared with 

existing tools. Second , its ability to decipher the mechanism 

underlying RNA coding potential (a long-standing problem 

in modern RNA studies) was also assessed. Based on these 
analyses, this new algorithm had demonstrated superior abil- 
ity (comparing with all those existing tools) in not only pre- 
dicting RNA-associated interactions but also revealing RNA 

coding potential. The online version of this tool is now read- 
ily accessible by all users at: https:// idrblab.org/ corain/ , and 

all the corresponding source codes can be downloaded from: 
https:// github.com/ idrblab/ corain/ . 

Materials and methods 

Comprehensive and innovative RNA encoding 

realized in this study 

RNA encoding features published by previous works 
A total of 380 RNA descriptors were collected, which had 

been widely used as encoding features supporting modern 

RNA study. As illustrated in Figure 3 , these 380 encod- 
ing features could be grouped into eight feature groups (in 

white font), which included: sequence-intrinsic features (five 
groups containing 177 features), physico-chemical features 
(two groups covering 195 features) and structure-based fea- 
tures (one group including eight features). The brief introduc- 
tion to and an exemplar application of each feature group 

were described in both Table 1 and Supplementary Table S1.
Since those 380 encoding features were previously published,
their corresponding feature groups were named as Traditional 
Encoding Feature Groups ( TraEFGs , colored in white font in 

Figure 3 ), and the detailed description of these TraEFGs was 
provided in the Supplementary Methods. Some feature groups 
had multiple subgroups, and all the features encoded by the 
subgroups could then be concatenated to a vector. Taking the 
feature group ‘ Open Reading Frame ’ as an example, diverse 
subgroups were covered by this study, which included basic 
open reading frame features , entropy density profiles on ORF ,
measurement of hexamer on ORF , and so on. 

It is worth noting that two-dimensional encoding features 
of 3 TraEFGs ( 52–54 ) as well as spatial structure encoding 
features of another 3 TraEFGs ( 54–56 ) were reviewed and 

organized in Table 1 and Supplementary Table S1. Because 
of the incompatibility among the features of different dimen- 
sions and the lack of spatial structure data for most RNAs,
this study focused on discussing RNA descriptors of one di- 
mension, which were comprehensively provided in Figure 3 . 

RNA encoding features ne wl y proposed by this study 
Inspired by the protein encoding strategy proposed by our pre- 
vious study ( 35 ), a total of 297 new RNA descriptors were 
introduced into this work. As illustrated in Figure 3 , these 
novel encoding features could be grouped into six feature 

https://idrblab.org/corain/
https://github.com/idrblab/corain/
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Figure 1. The overlaps of the selected best-performing encoding features of three RNA–RNA interactions (RRIs) datasets. ( A ) the Venn diagram was 
annotated with the number of e x clusiv e and o v erlapped features for three RRIs datasets; ( B ) the Upset plot represented the number of features from 

e v ery o v erlapping region in (A). Gre y strips indicated the number of selected best-perf orming features of each dataset. Dots and lines indicated the 
source datasets of the selected features, meaning which ones of the three datasets the selected features belong to. Those histograms indicated the 
number of selected best-performing features from each overlapping region in (A), with overlapped features of all three datasets illustrated as bar in blue, 
o v erlapped features of just two RRIs datasets illustrated as bars in pink and non-o v erlapped e x clusiv e features illustrated as bars in green. 

Figure 2. The unique functions provided by CORAIN: ( a ) a comprehensive feature encoding for the studied RNA; ( b ) a task-specific feature embedding 
and integration based on the autoencoder. 
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Figure 3. The comprehensive list of RNA encoding feature groups (generating 1D RNA features) applied in this w ork. T he outer-most lea v es indicated 14 
RNA encoding feature groups, and these groups were divided to three feature classes (sequence-intrinsic, ph y sico-chemical and structure-based that 
were colored in red, green and grey, respectively). There were two types of feature groups in the outer-most leaves: New Encoding Feature Groups 
( NewEFGs , highlighted in yellow bold font) proposed by this study & Traditional Encoding Feature Groups ( TraEFGs , colored in white font) previously 
published. Numbers in brackets denoted the numbers of features in each feature group. As illustrated, a total of 297 features were from NewEFG , and a 
total of 380 features were from TraEFG , which indicated that many New Encoding Features from diverse NewEFGs were implemented into this study to 
facilitate encoding of RNAs and RNA-associated Interactions. 
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groups (in yellow font), which were: physico-chemical fea-
tures (four groups of 204 features) and structure-based fea-
tures (two groups of 93 features). A brief introduction to these
feature groups was shown in Table 1 . Since the 297 encod-
ing features were newly introduced, their corresponding fea-
ture groups were entitled to be New Encoding Feature Groups
( NewEFGs , highlighted in yellow bold font in Figure 3 ), and
the detailed description of these NewEFGs was also provided
in Supplementary Methods. Particularly, based on physico-
chemical and structural properties of four nucleotide types
that were specified by bases ( adenine , guanine , cytosine &
uracil ), the corresponding values were calculated using PaDEL
( 57 ), which were shown in Supplementary Table S2. Four nu-
cleotide types were classified into two or three groups accord-
ing to the pre-set threshold values of each physico-chemical
and structural property. Then, composition, transition and
distribution and k -mer ( k = 1, 2, 3) were applied to each 

group of RNAs to calculate their corresponding features. The 
detailed definition and calculated process for generating these 
NewEFGs were described in detail in Supplementary Meth- 
ods. 

As a result, a total of 677 RNA encoding features were gen- 
erated by combining all features from eight TraEFGs and six 

NewEFGs . To the best of our knowledge, the 677 encoding 
features were the most comprehensive RNA encoding feature 
that had ever been provided in the existing tools ( 25 , 58 , 59 ).
Moreover, the encoding features for protein and compound 

were also made available in our algorithm to facilitate RNA- 
associated interaction prediction. The detailed information of 
the way how a protein / compound was encoded was explicitly 
described in both Supplementary Table S3 and Supplementary 
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Table 1. Description on two typical classes of RNA encoding feature ( Ph y sico-chemical Feature & Structure-based Feature ) 

Feature group 
(abbreviation) 

Feature 
type 

No. of features 
(dimensionality) 

Brief introduction of 6 NewEFGs proposed by this study 
together with description on the application of 8 TraEFGs in 
previous publications 

Feature Class: Ph ysico-c hemical Features 
EIIP-based Spectrum 

(EBS) 
TraEFG 8 (1D) Applied to identify lncRNA and predict lncRNA–protein 

interactions using a classifier generated by various machine 
learning algorithms ( 29 ). 

Hydrogen Bond 
Related (HBR) 

NewEFG 93 (1D) A NewEFG proposed in this study. The features in this 
group are calculated based on the properties of hydrogen 
bond interactions in RNA sequences. 

Lipoaffinity Index 
(SLF) 

NewEFG 42 (1D) A NewEFG proposed in this study. The features in this 
group describe the solubility of RNA according to the value 
of the lipoaffinity index of the bases. 

Molar Refractivity 
(MRA) 

NewEFG 27 (1D) A NewEFG proposed in this study. The features in this 
group are based on the molar refractivity to reflect the 
change of the RNA sequence under polarization. 

Partition Coefficient 
(PCF) 

NewEFG 42 (1D) A NewEFG proposed in this study. The features in this 
group characterize the hydrophobic nature of RNA 

sequences using the value of partition coefficients. 
Pse- 
protein / Nucleotide 
(PPR) 

TraEFG 187 (1D) Applied to predict the noncoding RNAs based on the pseudo 
protein related features of the RNA sequences using a deep 
resident network ( 83 ). 

Sparse Encoding (SEC) TraEFG 1000 × 3 (2D) Applied to propose a deep learning method for predicting 
cancer based on generating stacked sparse autoencoders to 
encode different RNAs ( 54 ). 

Feature Class: Structure-based Features 
Clash Score (CSC) TraEFG 10 (1D) Applied to evaluate the prediction performance for RNA 3D 

structure based on RNA PDB data and structure 
manipulation ( 56 ). 

Helical Parameters 
(HPM) 

TraEFG 6 (1D) Applied to identify the RNA-binding sites in a variety of 
proteins based on the 3D structural information of a large 
number of RNAs ( 55 ). 

Molecular Fingerprint 
(MFP) 

NewEFG 27 (1D) A NewEFG proposed in this study. The features in this 
group are calculated based on the molecular fingerprints of 
four different base structures of RNA. 

One-hot Encoding 
(SCO) 

TraEFG 1000 × 7 (2D) Applied to predict the binding site of diverse RNAs or 
proteins based on deep neural networks with the use of 
one-hot encoding method ( 63 ). 

RNA Voxelization 
(RVL) 

TraEFG 32 × 32 × 32 
(3D) 

Applied to systematically assess the prediction performance 
of RNA tertiary structures using multi-channel 
convolutional neural network models ( 54 ). 

Secondary Structure 
(SST) 

TraEFG 8 (1D) Applied to identify lncRNA and predict lncRNA–protein 
interactions using a classifier generated by various machine 
learning algorithms ( 55 ). 

Topological Indices 
(TGI) 

NewEFG 66 (1D) A NewEFG proposed in this study. The features in this 
group are calculated based on the topological relationships 
among four structures of RNA bases. 

There were two types of feature groups: New Encoding Feature Group (NewEFG) proposed by this study & Traditional Encoding Feature Group (TraEFG) 
published by previous works. For NewEGF, an introduction was provided. For TraEFG, its application in previous study was described. 1D: feature encoded 
as one-dimensional vector; 2D: feature encoded as two-dimensional matrix; 3D: feature encoded as three-dimensional voxels. Taking all eleven groups of 1D 

feature as an example, a total of 297 features were from NewEFG, which were significantly larger than that (219) from TraEFG. Such number indicated that 
a large number of New Encoding Features from diverse NewEFGs were implemented into this study. 
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 novel strategy proposed for enabling 

ask-specific feature embedding 

o eliminate the noise lying in RNA encoding features and
odify the feature length for ensuring a balanced integration
f the interacting partners, a new self-supervised deep learn-
ng framework, convolutional autoencoder , was introduced
o this study for extracting the informative embedded fea-
ures. This framework included an encoder module based on
he convolutional neural network (CNN) and decoder module
ased on the deconv olutional alg orithm . As shown in Figure
 , the comprehensive set of RNA encoding features (a total
f 677) were first obtained and transmitted into the convolu-
ional layer comprising four blocks. Each block contained a
onvolutional layer followed by a rectified linear unit, a batch
normalization layer and a maxpool layer. The changes on the
size of feature map was indicated in Figure 4 . Second , fol-
lowing the convolutional blocks, the feature vectors were flat-
tened and sent into a fully connected layer to customize their
lengths and acquire latent feature vectors. Third , the latent
feature vectors were sent to a fully connected layer and then
reshaped for conducting deconvolution. Fourth , the deconvo-
lutional blocks would rescale the feature vector into its orig-
inal size (a total of 677) via the mirror-symmetric paradigm.
The changes of the size of feature map was indicated in Figure
4 . Fifth , a loss calculation based on mean squared error was
conducted by which the autoencoder would be retrained to
ultimately acquire the final embedded feature. Sixth , a similar
process was performed to acquire embedded feature for in-
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Figure 4. The framework of the self-supervised autoencoder constructed in this study for RNA feature embedding and integration. This autoencoder 
consisted of an encoder module based on con v olutional neural netw orks and a decoder module based on decon v olutional algorithm. T he optimization of 
autoencoder was achieved by calculating the mean square error (MSE) between the input feature vector and the reconstructed feature vector. The 
embedded features obtained by the optimized autoencoder would be paired and integrated for predicting RNA-associated interactions. The numbers 
annotated in the figure denoted the sizes of the feature maps. 
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teracting partners, which were paired and integrated through
concatenation and then used as the input of various classifier
to execute downstream prediction tasks. 

Assessing encoding performance for RNA and 

RNA-associated interaction 

The encoding algorithm was established by incorporating
the pipeline of comprehensive feature encoding, autoencoder -
based feature embedding and interacting partner integration.
In this study, nine benchmark datasets from previous publi-
cations were collected, which contained three types of RNA-
related prediction tasks: RRIs ( 6 ), RPIs ( 26 ) and RNA coding
potential ( 25 ). 

A variety of benchmarks for performance assessment 
As shown in Table 2 , there were three types of benchmark
datasets, which were ‘benchmarks of RNA–RNA interac-
tions (RRI-bencM)’, ‘benchmarks of RNA-Protein interac-
tions (RPI-bencM)’ and ‘benchmarks of RNA coding po-
tential (RCP-bencM)’. Particularly, the RRI-bencM included
three datasets of miRNA-lncRNA interactions from three
different species: Arabidopsis thaliana (Ath), Glycine max
(Gma) and Medicago truncatula (Mtr) ( 6 ); the RPI-bencM
had five datasets (RPI488, RPI369, RPI1807, RPI2241 &
NPInter) from RPITER ( 26 ); the RCP-bencM contained one
dataset that had 41 917 RefSeq mRNAs ( 60 ) and 32 404 En-
sembl ncRNAs ( 61 ). The detailed information of the studied 

benchmarks of these three types was provided in Table 2 . 

Construction of training, validation and test datasets 
For RRI-bencM (as shown in Supplementary Figure S1a),
cross-species tasks for the prediction of RRIs were conducted 

on three benchmark datasets from different species ( Ath , Gma 
and Mtr ). Specifically, each dataset was divided by 4:1 to train- 
ing and validation sets. Then , the remaining two datasets were 
used as a test set separately to evaluate the performance of the 
optimized model. For example, a total of 5000 samples (2500 

positive & 2500 negative) from the dataset of Ath were di- 
vided into the training (2000 positive & 2000 negative) and 

validation (500 positive & 500 negative) sets. Those remain- 
ing two datasets of Gma (2500 positive & 2500 negative) 
and Mtr (2500 positive & 2500 negative) were adopted as 
two independent test sets. As a result, six groups of Training- 
V alidation-T est sets were created. For RPI-bencM (Supple- 
mentary Figure S1b), the cross-dataset tasks for the predic- 
tion of RPIs were conducted on five datasets (RPI488, RPI369,
RPI1807, RPI2241 and NPInter). In the task where RPI488 

was used as the test set, the remaining datasets (RPI369,
RPI1807, RPI2241 & NPInter) were merged and randomly 
divided by 4:1 into the training and validation sets. Similarly,
the datasets of RPI369, RPI1807, RPI2241 and NPInter were 
successively used as an independent test set with the remaining 
four as training and validation sets. As a result, five groups of 
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Table 2. A total of nine benchmark datasets were collected and assessed in this study, which included three RNA–RNA interaction benchmarks, five 
RNA–protein interaction benchmarks and one RNA coding potential benchmark 

Benchmarks of RN A–RN A inter actions 
No. of 
miRNAs 

No. of 
LncRNAs 

No. of molecule 
pairs Reference 

Arabidopsis thaliana 
(Ath) 

Interacting Pairs 331 2014 2500 Bioinformatics.36:2986, 2020 ( 6 ) 

Non-interacting Pairs 266 1964 2500 
Glycine max (Gma) Interacting Pairs 401 1770 2500 Bioinformatics. 36:2986, 2020 ( 6 ) 

Non-interacting Pairs 542 171 2500 
Medicago truncatula 
(Mtr) 

Interacting Pairs 335 1986 2500 Bioinformatics. 36:2986, 2020 ( 6 ) 

Non-interacting Pairs 424 2442 2500 
Benchmarks of RNA-Protein Interactions No. of RNAs No. of 

proteins 
No. of molecule 
pairs 

Reference 

NPInter Interacting Pairs 4636 449 10 412 NucleicAcids Res . 42:D104, 2014 
( 84 ) 

Non-interacting Pairs 4636 449 10 412 
RPI1807 Interacting Pairs 1072 1801 1807 NucleicAcids Res . 43:1370, 2015 

( 70 ) 
Non-interacting Pairs 493 1434 1436 

RPI2241 Interacting Pairs 841 2042 2241 BMCBioinformatics . 12:489, 2011 
( 85 ) 

Non-interacting Pairs 734 2042 2241 
RPI488 Interacting Pairs 24 212 243 BMCGenomics . 17:582, 2016 ( 86 ) 

Non-interacting Pairs 16 140 245 
RPI369 Interacting Pairs 332 338 369 BMCBioinformatics . 12:489, 2011 

( 85 ) 
Non-interacting Pairs 223 338 369 

Benchmarks of RNA Coding Potential No. of RNAs Reference 
CPPred Coding RNAs 41917 NucleicAcidsRes. 47: e43, 2021 ( 25 ) 

Non-coding RNAs 32404 

The numbers of molecules included in each dataset were shown. 
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raining-V alidation-T est sets were generated. For RCP-bencM
as shown in Supplementary Figure S1c), the only dataset was
ivided by 4:1 into training and validation sets. The same in-
ependent test set as used in the original publication ( 25 ) was
tilized to evaluate the optimized model’s performance. 

hree types of tasks used for performance assessment 
o investigate the prediction performances of the new
ncoding algorithm, minimal-redundancy-maximal-relevance
mRMR) program together with incremental feature selection
IFS) method ( 62 ) were applied based on the datasets from
PI-bencM (as shown in Table 2 ). Particularly, (a) the mRMR
rogram was used to rank all 677 features by assessing the
ignificance and relevance of each feature based on both cri-
eria of minimum redundancy and maximum correlation ; (b)
he IFS was applied to generate feature subsets through in-
egrating the features incrementally based on the ranking of
77 features to eventually form 677 feature subsets with each
ubset containing one more feature than the previous one; (c)
ia thorough scanning of these feature subsets based on ran-
om forest (RF) classifier, an optimal feature subset would ul-
imately be selected. 

he prediction task of RN A–RN A inter actions (RRIs) 
he performances of our algorithm in the prediction of cross-
pecies RRIs were tested based on three benchmarks of RRI-
encM (as provided in Table 2 ). The strategy for splitting
he training-validation dataset followed the same way as de-
cribed in the section of ‘ Construction of Training, Valida-
ion and Test Datasets ’, and six cross-species RRIs tasks were
enerated (Supplementary Figure S1a). During the encoding
rocess, each RNA was converted into a vector of 677 fea-
tures, which were then extracted using autoencoder to gen-
erate the embedded features. Two embedded features of in-
teracting RNA partners were integrated and sent to the same
classifier as that of the previous study ( 6 ), which was a hy-
brid model combining CNN with bidirectional gated recur-
rent unit (CNN-BiGRU). Moreover, two additional classifiers
( random forest and CNN) were applied for assessment, which
had been adopted in previous publications for RRIs prediction
( 6 ,38 ). 

The prediction task of RNA–protein interactions (RPIs) 
The performances of the newly proposed algorithm in pre-
dicting cross-dataset RPIs were further tested by five bench-
mark datasets of RPI-bencM shown in Table 2 . The strat-
egy for splitting the training-validation datasets followed the
same way as described in the ‘ Construction of Training, Vali-
dation and Test Datasets ’ and five cross-dataset RPIs predic-
tion tasks were created (shown in Supplementary Figure S1b).
Each interacting RNA was converted to a vector of 677 fea-
tures following the process described in the section of ‘ A Novel
Strategy Proposed for Enabling Task-specific Feature Embed-
ding ’, and the corresponding interacting proteins were trans-
ferred into a vector of 438 features using the same strategy as
that was described in previous study ( 26 ). Both vectors were
extracted by autoencoder to obtain their embedded features,
which were then paired, integrated and sent to the same clas-
sifier (an ensemble model of CNN and stacked auto-encoder)
as that of the previous study ( 26 ). Moreover, four additional
classifiers (XGBoost, support vector machine , CNN, random
forest ; shown in Supplementary Table S5) were applied for
evaluation, which were adopted in previous publications for
RPIs prediction ( 30 ,63–65 ). 
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The prediction task of RNA coding potentials (RCPs) 
The performances of the new algorithm in assessing RNA cod-
ing potential were compared with ten existing tools based on
one benchmark dataset of RCP-bencM (as described in Ta-
ble 2 ). The strategy for splitting training-validation dataset
followed the same way as described in the section of ‘ Con-
struction of Training, Validation and Test Datasets ’ (provided
in Supplementary Figure S1c). During the encoding process,
each RNA was converted into a vector of 677 features, which
were extracted using autoencoder for generating the embed-
ded features and sent to a subsequent classifier ( support vector
machine ) to learn and predict the RNA coding potential. 

The metrics used for evaluating the constructed models 
The classifier of hybrid model CNN-BiGRU and the ensemble
model of CNN and stacked auto-encoder that were adopted
in this study were the same as that of two previous stud-
ies ( 6 ,26 ), and various hyperparameters ( learning rate , batch
size & dropout rate ) were tuned using grid search. Random
forest was built based on scikit-learn Python package (V-
0.24.1), and a hyperparameter ( n_estimator ) was tuned by
exhaustive searching through manually specified value range
in the hyperparameter space. CNN was constructed based
on TensorFlow (V-2.3.0) and Keras libraries (V-2.4.3), sup-
port vector machine (SVM) was developed using Python pack-
age thundersvm (V-0.3.3) ( 66 ), and XGBoost was built by
Python package xgboost (V-1.4.2). The hyperparameters of
these three machine learning methods ( learning rate , batch
size and dropout rate for CNN; C , gamma and kernel func-
tion for SVM; n_round , learning rate and max depth for XG-
Boost) were tuned using grid search method. Detailed infor-
mation of these studied hyperparameters for RRIs and RPIs
were shown in Supplementary Table S6 and Supplementary
Table S7, respectively. The optimized hyperparameters for the
RCP task were finally set to C = 10 and gamma = 0.001. The
optimized hyperparameters for the autoencoder models of all
tasks above were displayed in Supplementary Table S8. Dur-
ing performance evaluations, a variety of standard quantifi-
cation metrics were applied, which included accuracy (ACC),
Matthews correlation coefficient (MCC), and the area under
the receiver operating characteristic curve (ROC-AUC) ( 30 ). 

Differentiating features’ importance using the 

algorithm of permutation 

It was very essential to investigate the contributing features
identified by the new algorithm from the comprehensive en-
coding features and take a glimpse at the learning result of
the autoencoder . The importance scores of 677 features were
calculated based on the best-performing autoencoder model
using the permutation algorithm ( 67 ), which had been used in
previous publications ( 68 ). Particularly, the original error was
first estimated using the original encoded feature matrix as an
input. Second , for each feature, permuted feature matrix was
reformed by permuting features in the original feature matrix,
which discarded the influences of features toward the original
matrix. Third , the permuted errors were estimated using the
predictions from the permuted feature matrix, and the per-
mutation feature importance scores were calculated. Fourth ,
higher importance scores reflected greater difference, which
indicated the neglection of feature would negatively influence
model performances. Thus, features’ importance was ranked
by descending scores, and the above assessment of feature im-
portance was conducted in all three tasks carried out in this 
study. 

Results and discussion 

Application of the novel Task-specific encoding 

strategy for RRIs prediction 

In current cell biology research, it is popular to conduct in- 
experienced studies upon little-studied species by leveraging 
high-quality data from popular species ( 69 ). In this work, six 

tasks of cross-species RRIs prediction were established us- 
ing RRI-bencM shown in Table 2 , which considered the ge- 
netic difference across species ( 6 ). Particularly, the RRIs of 
one species were used to train model, which was then applied 

to predict the RRIs of another species. As a result, six cross- 
species prediction tasks entitled ‘training species-test species’ 
(as shown in Figure 5 A) were carried out. The performance of 
the embedded feature was evaluated and compared with the 
original features proposed in a previous publication ( 6 ) using 
the same classifier as that of the original study. 

As illustrated in Figure 5 A, the new algorithm using 
autoencoder -based embedded feature (dash line in orange) 
outperformed the strategy of original study ( 6 ) (dash line in 

grey) in all six cross-species tasks. The improvements in ACCs 
made by the new algorithm were shown in Figure 5 A (over 
5% increase colored in blue). Particularly, in the tasks of Mtr- 
Gma , Mtr-Ath and Gma-Ath , considerable elevations in ACC 

values were achieved by 17.0%, 11.8% and 24.4%, respec- 
tively. Moreover, the embedded features were investigated by 
additional machine learning model (CNN and random for- 
est ), which had been commonly applied to predict the RRIs 
( 6 , 38 , 39 ). As a result, our new encoding algorithm achieved 

a similar level of performance elevations regardless of the ap- 
plied machine learning models (Supplementary Figure S2). All 
in all, the proposed algorithm achieved substantial improve- 
ments in all tasks, which indicated that it could successfully 
extract informative RNA features to effectively enhance its 
capacity in RRIs prediction. 

To assess the contributions of the features from the 14 en- 
coding feature groups (8 TraEFGs and 6 NewEFGs ) of the 
new algorithm, the importance of a total of 677 encoding fea- 
tures (380 from TraEFGs and 297 from NewEFGs ) was eval- 
uated. Based on the permutation algorithm and mean squared 

error metric (detailed description was provided in the 4th sec- 
tion of Materials and methods), the importance of all features 
was ranked to reflect their contribution in final RNA repre- 
sentation. All three RRIs datasets above were evaluated, and 

those features with the positive importance scores were con- 
sidered to be of great contribution (as shown in Figure 5 ). 

The importance ranking results for three datasets of Ath ,
Gma and Mtr were separately presented in Figure 5 B–C and 

D. Taking the Figure 5 B as an example, the features from 

NewEFGs (bars in red) were ranked higher than those from 

TraEFGs (bars in green). Particularly, in top-100, top-200 and 

top-300 encoding features, those NewEFG features accounted 

for 33.0%, 44.5% and 46% respectively, highlighting the cru- 
cial roles they played in the functioning of the model. Rank- 
ing distribution of NewEFG (red shading section) & TraEFG 

(green shading section) features were shown in the density 
distribution chart, more vividly revealing each’s contribution.
Similar conclusions can be summarized from Figure 5 C and 

D. In sum, NewEFG features accounted for 43.5%, 46.3% 
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Figure 5. The performance of CORAIN in predicting cross-species RNA–RNA interactions. ( A ) The comparison of performance between CORAIN (dash 
lines and dots in orange) and the original encoding features from PmliPred ( 6 ) (dash lines and dots in grey). The performance was compared using 
accuracies (ACCs) metric as the indicator and the classifiers from PmliPred ( 6 ). The improvements of ACC value made by CORAIN were annotated by �
(the increases > 5% were colored in blue). RNA–RNA interactions datasets of three species provided in PmliPred ( 6 ) were used for performance 
assessments, which included Arabidopsis thaliana (Ath), Glycine max (Gma) and Medicago tr uncat ula (Mtr). Those six cross-species prediction tasks 
were entitled ‘training species-test species’, as provided at the bottom. Taking the ‘Mtr-Gma’ as an example, the dataset of Medicago tr uncat ula (Mtr) 
was used for training and validation, and the dataset of Glycine max (Gma) was adopted for testing. ( B–D ) The importance rankings of contributing RNA 

features identified by CORAIN. The features in the New Encoding Feature Groups ( NewEFGs ) were illustrated as bars in RED, and the features in the 
Traditional Encoding Feature Groups ( TraEFGs ) were indicated as bars in GREEN. These density distribution charts indicated the ranking distribution of 
NewEFG (red shading part) and TraEFG features (green shading part). Ranking was conducted for three PmliPred ( 6 ) datasets, including (B) dataset of 
Ath, (C) dataset of Gma and (D) dataset of Mtr. 
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nd 46.2% of all contributing encoding features in the three
atasets, which indicated that they were effective complemen-
ation to the existing method, improving the predictive perfor-
ance for cross-species RNA–RNA interactions. 

pplication of the novel task-specific encoding 

trategy for RPIs prediction 

he prediction of RNA–protein interactions had proved to
e a vital scope in the study of cellular process and disease
echanism ( 70 ), but remains the challenging research direc-

ion. Thus, it was necessity to take a step further and probe the
erformance of our new algorithm for the prediction of RPIs.
o fully illustrate the ability of autoencoder -based embed-
ed features, five cross-dataset tasks of RPIs prediction were
onstructed based on RPI-bencM shown in Table 2 , through
hich limited data could be utilized on much larger scale ( 26 ).
articularly, five cross-dataset prediction tasks were generated
nd investigated using each dataset as the test set, iteratively,
ith the other four datasets used as a training. Each task was
amed after its test set, RPI488, RPI369, RPI1807, RPI2241
nd NPInter (Figure 6 A). The embedded features of our new
lgorithm were compared with that of previous publication
 26 ) using the same classifier as that of the original study. 

As shown in Figure 6 A, throughout the five cross-dataset
asks, our new algorithm (dash line in orange) outperformed
hat of the original publication ( 26 ) (dash line in grey). The
mprovements in ACCs were annotated (over 5% elevation
colored in blue). Specifically, in the tasks of RPI369, RPI1807,
RPI2241 and NPInter, the considerable enhancement in ACC
values was achieved by 8.9%, 11.9%, 10.4% and 23.1%, re-
spectively. Moreover, as described in Supplementary Figure
S3, the embedded feature was further investigated using other
popular machine learning models (XGBoost, support vector
machine , CNN, random forest ; shown in Supplementary Ta-
ble S5). As a result, our new embedded feature outperformed
the original one in all classifiers (shown in Supplementary Fig-
ure S3). In sum, the new algorithm made great elevation in all
tasks. 

To assess the contributions of the features from the 14 en-
coding feature groups (8 TraEFGs and 6 NewEFGs ) of the
new algorithm, the importance of a total of 677 encoding
features (380 from TraEFGs and 297 from NewEFGs ) was
evaluated. Five RPIs datasets above were evaluated, and those
features with the positive importance score were considered
to be of great contribution (as shown in Figure 6 ). The im-
portance ranking results for five datasets (RPI488, RPI369,
RPI1807, RPI2241 and NPInter) were presented in Figure 6 b–
f, respectively. Taking Figure 6 b as an example, the NewEFG
features (bars in red) were ranked higher than the TraEFG
ones (bars in green). In top-100, top-200 and top-300 en-
coding features, the NewEFG features accounted for 42.0%,
49.0% and 52.3% respectively, highlighting the key roles they
played in the functioning of the models. Ranking distribution
of NewEFG (red shading section) & TraEFG (green shading
section) features were shown in the density distribution chart,
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Figure 6. The performance of CORAIN in the prediction of cross-dataset RNA–protein interactions. ( A ) The comparison of performance between 
CORAIN (dash lines and dots in orange) and the original encoding features of RPITER ( 26 ) (dash lines and dots in grey) in the prediction of cross-dataset 
RNA–protein interactions. The performance was compared using accuracies (ACCs) as the indicator and the classifier from RPITER ( 26 ). The 
impro v ements of ACC value made by CORAIN were denoted by � (the increases > 5% were colored in blue). RNA–protein interactions datasets from 

the original datasets (RPI488, RPI369, RPI1807, RPI2241 & NPInter) of RPITER ( 26 ) were used to generate the training & testing data. These five 
cross-dat aset t asks were named af ter eac h’s test set, as provided at the bot tom. Taking the ‘RPI488’ as an e xample, RPI488 w as used as testing, and 
the remaining four datasets were generated as the training and validation sets. ( B–F ) The importance rankings of contributing RNA features identified by 
CORAIN. The features in New Encoding Feature Groups ( NewEFGs ) were illustrated as bars in RED, and the features in the Traditional Encoding Feature 
Groups ( TraEFGs ) were indicated as bars in GREEN. These density distribution charts indicated the ranking distribution of NewEFG (red shading part) 
and TraEFG features (green shading part). Ranking was conducted to five distinct RPITER ( 26 ) datasets including: (B) RPI488, (C) RPI369, (D) RPI1807, (E) 
RPI2241 and (F) NPInter. 
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more vividly revealing each’s contribution. Similar conclu-
sions can be summarized from Figure 6 C–F. In sum, NewEFG
features accounted for 47.8%, 50.6%, 48.3%, 42.8% and
45.0% of all encoding features in five datasets, which indi-
cated that they were effective in improving the predictive per-
formance for cross-dataset RNA–protein interactions. 

To explain the contribution of features in RNA-related
studies, two exemplar datasets (‘RPI2241’ focusing mostly on
the RPIs between ribosomal RNA and protein & ‘NPInter’
primarily on the RPIs between non-ribosomal RNA and pro-
tein) were analyzed. Based on those analyses realized by our
new algorithm, the importance scores of all features were cal-
culated for both datasets. As shown in Supplementary Fig-
ure S4, those unique features identified from each dataset and
their overlap were statistically assessed (those top 10% of all
features were evaluated as suggested by previous publication
( 71 ). As a result, a variety of features related to ‘ lipoaffinity ’
were identified from RPI2241 dataset, while not being discov-
ered from NPInter. These newly identified features belonged to
the NewEFG features that were introduced, for the first time,
to RNA-related studies by this work, which was named as the
Lipoaffinity Index feature group. The previous experiments
have discovered that the ribosomal RNAs (mostly included 

in RPI2241) interacted with the lipids, thereby influencing 
their interactions with proteins ( 72 ), which were consistent 
to the discovery of this work ( Lipoaffinity Index features).
When it came to those overlap features simultaneously identi- 
fied from both datasets, the feature group of Hydrogen Bond- 
related was discovered in this study, which also belonged to 

the NewEFG feature groups that were introduced, for the first 
time, to RNA-related studies by this work. Previous studies 
have proved the crucial roles of hydrogen bonds in multiple 
RPI complexes ( 73 ), which were also highly consistent to the 
discovery of this work ( Hydrogen Bond-related features). All 
in all, our new algorithm could also been applied to uncover 
the key RNA features underlying the mechanisms of various 
RNA-related studies. 

Application of the encoding algorithm for RNA 

coding potential prediction 

In this study, the ability of the newly proposed algorithm 

to reveal RNA coding potential (a long-standing problem in 

modern RNA studies) were further assessed. Particularly, the 
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Figure 7. The importance rankings of encoding features identified using CORAIN for predicting RNA coding potential. Those features in New Encoding 
Feature Groups ( NewEFGs ) were shown as bars in RED, and those features in the Traditional Encoding Feature Groups ( TraEFGs ) were indicated as bars 
in GREEN. The density distribution charts indicated the ranking distribution of NewEFG (red shading part) and TraEFG features (green shading part). 
Rankings were conducted to the published CPPred ( 25 ) dataset. 

Table 3. Comparing the performance of CORAIN with that of ten existing 
SOTA methods for RNA coding potential prediction based on a previously 
published benchmark dataset ( 25 ) 

ACC MCC AUC 

CPAT 0.943 0.884 0.983 
CPC2 0.931 0.863 0.981 
CPE-SLDI 0.822 0.680 0.957 
CPPred 0.947 0.894 0.987 
DeepCPP 0.886 0.774 0.926 
FEELnc 0.955 0.911 0.988 
mRNN 0.824 0.673 0.940 
PLEK 0.966 0.932 0.992 
RNAmining 0.899 0.797 0.965 
RNAsamba 0.956 0.917 0.992 
CORAIN (this study) 0.971 0.941 0.995 

These existing methods included CPAT (75), CPC2 (76), CPE-SLDI (77), CP- 
Pred (25), DeepCPP (79), FEELnc (80), mRNN (81), PLEK (74), RNAmin- 
ing (78) and RNAsamba (82). ACC: accuracy; MCC: Matthews correlation 
coefficient; AUC: area under ROC curve. The highest performance values 
under three metrics (ACC, MCC and AUC) are highlighted in BOLD font, 
respectively. 
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erformances of the new algorithm were compared with all
xisting tools ( 4 , 25 , 74–78 ) based on the datasets of RCP-
encM in Table 2 . As shown in Table 3 , our new algorithm
chieved a significantly better performance comparing with
he existing tools: CPAT ( 75 ), CPC2 ( 76 ), CPE-SLDI ( 77 ), CP-
red ( 25 ), DeepCPP ( 79 ), FEELnc ( 80 ), mRNN ( 81 ), PLEK
 74 ), RNAmining ( 78 ), RNAsamba ( 82 ), etc. Detailed infor-
ation of their adopted encoding strategy and applied models
as provided in Supplementary Table S9. Particularly, MCCs

chieved by new algorithm made were increased by 5.7%,
.8%, 26.1%, 4.7%, 16.7%, 3.3%, 39.8%, 0.9%, 14.4% and
.6%, respectively, which showed its ability in revealing the
echanisms underlying the RNA coding potential. 
Moreover, it was of great interests to further evaluate what

as gained by feature-based encoding methods over non-
eature-based ones (especially the mRNN ( 81 )). The mRNN
elied heavily on a typical non-feature-based strategy (the one-
ot), and its performance on revealing RNA coding potential
as described in Table 3 . As shown, the feature-based encod-

ng algorithms (including our newly proposed one) were gen-
rally better-performed comparing with the non-feature-based
ne. Such elevation in performance may indicate the improved
bility of feature-based encoding in some RNA-related stud-
es. Moreover, due to the explicit description on RNA fea-
tures, feature-based encoding approaches would have better
capacity in explaining the mechanisms underlying an RNA
study (better interpretability), when comparing with the non-
feature-based ones. 

To assess the contributions of the features from the 14 en-
coding feature groups (8 TraEFGs and 6 NewEFGs ) of the
new algorithm, the importance of a total of 677 encoding
features (380 from TraEFGs and 297 from NewEFGs ) was
evaluated. An RCP benchmark was evaluated, and those fea-
tures with the positive importance score were considered to
be of great contribution (as shown in Figure 7 ). The im-
portance ranking results for the studied dataset were pre-
sented, the NewEFG features (bars in red) were ranked higher
than the TraEFG ones (bars in green). In those top-50, top-
100, top-200 and top-300 encoding features, NewEFG fea-
tures accounted for 64.0%, 68.0%, 62.0% and 58.0% re-
spectively, highlighting the key roles they played in the con-
structed models. Ranking distribution of NewEFG (red shad-
ing) & TraEFG (green shading) features were shown in den-
sity distribution chart. All in all, the newly introduced features
contributed significantly to the revealing of the mechanism un-
derlying RNA coding potential. 

Deployment of an online tool facilitating 

Task-specific RNA Encoding 

To make it usable and accessible to boarder users, an on-
line tool ( https:// idrblab.org/ corain/ ) was constructed based
on our newly proposed strategy. This tool was deployed us-
ing the Python web framework of Tornado (an asynchronous
networking library) on a Linux webserver implemented with
an eight-core CPU of 3.10 GHz and a memory of 64 GB. To
the best of our knowledge, this tool was unique in (a) pro-
viding the comprehensive set of features for encoding RNAs
which is accompanied by additional encoding features for
RNA-interacting molecules and (b) realizing a task-specific
feature embedding and integration based on autoencoder. The
online version of this tool is now readily accessible by all
users at: https:// idrblab.org/ corain/ , and all the correspond-
ing source codes can be downloaded from: https://github.
com/ idrblab/ corain/ . Additional dataset and software pack-
age were required for running these GitHub source codes,
which included a dataset file named ‘ swissprot ’ and a software
package named ‘ ncbi-blast-2.9.0+ ’. The dataset ‘ swissprot ’
was made downloadable from a separate site ( http://idrblab.
org/ corain/ download/ swissprot.zip ), and the software pack-

https://idrblab.org/corain/
https://idrblab.org/corain/
https://github.com/idrblab/corain/
http://idrblab.org/corain/download/swissprot.zip
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age ‘ ncbi-blast-2.9.0+ ’ should be downloaded from the web-
site of US NIH ( https:// ftp.ncbi.nlm.nih.gov/ blast/ executables/
blast+/2.9.0/ncbi- blast- 2.9.0+- x64- linux.tar.gz ). 

Conclusions 

In this study, a task-specific encoding algorithm for RNAs and
RNA-associated interactions was developed. This algorithm
was unique in (a) realizing comprehensive RNA feature en-
coding by introducing numerous novel features, and (b) en-
abling the task-specific integration of interacting partners us-
ing autoencoder -directed feature embedding. This novel algo-
rithm had demonstrated superior ability (compared with ex-
isting tools) in not only predicting RNA-associated interac-
tion but also revealing RNA coding potential. Our algorithm
and its source codes are now accessible by all user at: https:
// idrblab.org/ corain/ and https:// github.com/ idrblab/ corain/ . 
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