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ABSTRACT: Multiclass metabolomics has been widely applied in clinical practice to understand pathophysiological processes
involved in disease progression and diagnostic biomarkers of various disorders. In contrast to the binary problem, the multiclass
classification problem is more difficult in terms of obtaining reliable and stable results due to the increase in the complexity of
determining exact class decision boundaries. In particular, methods of biomarker discovery and classification have a significant effect
on the multiclass model because different methods with significantly varied theories produce conflicting results even for the same
dataset. However, a systematic assessment for selecting the most appropriate methods of biomarker discovery and classification for
multiclass metabolomics is still lacking. Therefore, a comprehensive assessment is essential to measure the suitability of methods in
multiclass classification models from multiple perspectives. In this study, five biomarker discovery methods and nine classification
methods were assessed based on four benchmark datasets of multiclass metabolomics. The performance assessment of the biomarker
discovery and classification methods was performed using three evaluation criteria: assessment a (cluster analysis of sample
grouping), assessment b (biomarker consistency in multiple subgroups), and assessment c (accuracy in the classification model). As
a result, 13 combining strategies with superior performance were selected under multiple criteria based on these benchmark datasets.
In conclusion, superior strategies that performed consistently well are suggested for the discovery of biomarkers and the construction
of a classification model for multiclass metabolomics.

■ INTRODUCTION
Metabolomics has been recognized as a leading technology
that enables simultaneous detection and quantification of
subtle variations in metabolites in biological fluids.1 Metab-
olome refers to the collection of small-molecule chemical
entities. Metabolomics has been applied for the identification
of biomarkers for the diagnosis and treatment of disease.2

Currently, metabolomics has been redefined as a popular
technique for identifying biomarkers for discovering active
drivers of biological processes.3 Therefore, metabolomics has
been extensively applied in clinical and biomedical studies as a
novel and holistic tool for understanding pathophysiological
processes involved in disease progression and the identification
of diagnostic biomarkers for various disorders.4

In metabolomics, the detection of multiclass biosamples is
often required for disease diagnoses and clinical applications.5

There are an increasing number of multiclass (N > 2)

problems analyzed using metabolomics.6,7 For example, a
multiclass metabolomic study has been applied to reveal the
level of bile acids in different cancerous sites,8 differentiate the
presence of succinate in diverse adipose tissues,9 and discover
variations in amino acids of different cell lines.10 Although
there have been various applications for multiclass metab-
olomics, multiclass studies are intrinsically more difficult for
obtaining reliable and stable results than case−control
studies.11

Received: October 6, 2022
Accepted: March 8, 2023
Published: March 21, 2023

Articlepubs.acs.org/ac

© 2023 American Chemical Society
5542

https://doi.org/10.1021/acs.analchem.2c04402
Anal. Chem. 2023, 95, 5542−5552

D
ow

nl
oa

de
d 

vi
a 

Z
H

E
JI

A
N

G
 U

N
IV

 o
n 

A
pr

il 
26

, 2
02

3 
at

 0
4:

55
:1

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qingxia+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaguo+Gong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.analchem.2c04402&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04402?fig=abs1&ref=pdf
https://pubs.acs.org/toc/ancham/95/13?ref=pdf
https://pubs.acs.org/toc/ancham/95/13?ref=pdf
https://pubs.acs.org/toc/ancham/95/13?ref=pdf
https://pubs.acs.org/toc/ancham/95/13?ref=pdf
pubs.acs.org/ac?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.analchem.2c04402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/ac?ref=pdf
https://pubs.acs.org/ac?ref=pdf


It has been reported that multiclass metabolomic studies are
much more complicated due to the complexity of determining
exact class decision boundaries.12,13 In particular, the steps of
biomarker discovery and classification have a significant effect
on the final results because there are significantly varied
theories underlying different methods.14,15 For metabolomics,
various powerful and attractive machine learning techniques
exist to analyze complex multiclass data.11 Fewer than five
methods can be applied for biomarker discovery, and fewer
than nine classification methods are widely used for
constructing classification models. Because of the significantly
varied theories underlying each biomarker discovery and
classification method, different methods can produce different
results even for the same metabolic data.16,17 Therefore, it is
necessary to distinguish the best-performing method from the
others for a given dataset. However, systematic assessments of
biomarker discovery and classification methods in multiclass
metabolomics are lacking. Moreover, a single criterion is
insufficient to assess the suitability of those methods.
Collective consideration of multiple criteria is recommended
for comprehensive assessment from different perspectives.
Taken together, a comprehensive assessment using multiple
criteria is necessary to evaluate the suitability of biomarker
discovery and classification methods.
In this study, a critical assessment of strategies combining

biomarker discovery methods and classification methods was
performed for multiclass metabolomics. First, different
methods (five biomarker discovery methods and nine
classification methods) widely used in multiclass metabolomics
were collected. Second, four benchmark metabolomic datasets
were applied to assess these methods. Third, a comprehensive
assessment was performed using three criteria from different
perspectives, including assessment α (cluster analysis of sample

grouping), assessment β (biomarker consistency in multiple
subgroups), and assessment γ (accuracy in the classification
model). As a result, 13 combinations of biomarker discovery
methods and classification methods were identified as
exhibiting superior performance based on the critical assess-
ment. Overall, this study offers metabolic strategies that
perform consistently well in constructing a stable classification
model for biological problems.

■ MATERIALS AND METHODS
Collection of Biomarker Discovery Methods and

Classification Methods. Five biomarker discovery methods
and nine classification methods were included in this study, all
widely used in the applications of multiclass metabolomics. In
Table 1A, the key descriptions of each biomarker discovery
method are summarized based on previous publications,
including the Kruskal−Wallis Test (KWT), one-way analysis
of variance (ANOVA), partial least squares-discriminant
analysis (PLS-DA), variable selection from Random Forest
(RF), and support vector machine-recursive feature elimi-
nation (SVM-RFE). In Table 1B, the key descriptions of each
classification method are summarized based on previous
publications, including AdaBoost, bagging, decision trees
(DT), K-nearest neighbor (KNN), linear discriminant analysis
(LDA), Native Bayes (NB), partial least squares (PLS),
Random Forest (RF), and support vector machine (SVM).
Detailed information on these 14 methods is presented in the
Supplementary Methods. An abbreviation (Table 1) was
assigned to each biomarker discovery and classification method
correspondingly throughout the manuscript. For example, the
combined strategy was depicted as RF + KNN when RF and
KNN were applied to discover biomarkers and construct a
classification model, respectively. In total, 45 strategies

Table 1. Key Descriptions of Each Method for Biomarker Discovery and Classification Based on Previous Publicationsa

methods abbr. descriptions

(A) biomarker discovery methods in multiclass metabolomics
Kruskal−Wallis test KWT KWT is used to determine the significant differences between the medians of two or more

independent groups38

one-way ANOVA ANOVA ANOVA compares the means of independent groups to determine statistical evidence of population
means45

partial least squares-discriminant analysis PLS-DA PLS-DA is a popular machine learning tool and a supervised feature selector39

variable selection from random forests RF RF is a machine learning algorithm and it combines the output of multiple decision trees to reach a
single result.40

support vector machine-recursive feature
elimination

SVM-RFE SVM-RFE can remove relatively insignificant feature variables to achieve higher classification
performance46

(B) classification methods in multiclass metabolomics
AdaBoost AdaBoost AdaBoost has a high accuracy by focusing on misclassified samples and generating a relatively good

model47

bagging bagging bagging is used to improve accuracy and make the model more generalize by reducing the variance41

decision trees DT DT is a reliable and effective technique and provides high classification accuracy with the gathered
knowledge48

K-nearest neighbor KNN KNN is one kind of the classical and popular classification approaches, which only need to tune one
parameter k49

linear discriminant analysis LDA LDA is a supervised classifier by creating multiple linear discrimination functions to distinguish
different classes50

native Bayes NB NB takes advantage of probability theory and Bayes’ Theorem to the multiclass classification
problem51

partial least squares PLS PLS extracts a set of latent factors and predicts dependent variables using decomposition of
independent variables43

random forest RF RF uses a large series of decision trees with low reciprocal correlation and can model nonlinear
relations for dirty data52

support vector machine SVM SVM is a supervised method that constructs a hyperplane to separate different groups for the given
data set44

aAbbreviation (abbr.) was assigned to indicate each method in the manuscript.
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combine one biomarker discovery method and one classi-
fication method for biomarker discovery and classification,
which were comprehensively evaluated for multiclass metab-
olomics in this study.
Collection of Benchmark Datasets for Multiclass

Metabolomics. To assess the performance of all strategies
for biomarker discovery and classification in multiclass
metabolomics, four benchmark datasets were collected from
the public database Metabolomics Workbench (www.
metabolomicsworkbench.org).18 Detailed information on
these four datasets is shown in Table 2. The processed dataset
was obtained after data preprocessing, including data filtering,
imputation for missing values, data transformation, and data
normalization from the raw data.19 The metabolites in all
samples were filtered using the 80% rule, and metabolites with
>80% missing values were removed from consideration. The
remaining missing values of metabolites were imputed using
the KNN (K-nearest neighbor imputation) method. After
imputation, the dataset was processed using the data
transformation (log transformation) method and data normal-
ization (Pareto scaling) method. For dataset ST000584, there
were five classes in 210 samples detected in zebrafish.20 In this
dataset, two subsets were named ST000584 positive mode and
ST000584 negative mode based on ion mode. For the dataset
of ST000584 positive mode, there were 15,447 metabolites in
the raw data, and 753 metabolites remained after data
preprocessing. For the dataset of ST000584 negative mode,
there were 8781 and 609 metabolites in the raw dataset and
dataset after data preprocessing, respectively. For dataset
ST000880, there were four classes in 47 samples detected in
the mouse.21 Two subsets in this dataset were named
ST000880 positive mode and ST000880 negative mode
based on ion mode. In the raw datasets, there were 11,265
and 10,677 metabolites for the datasets of ST000880 positive
mode and ST000880 negative mode, respectively. After data
preprocessing, there were 6259 and 4448 metabolites for the
datasets of ST000880 positive mode and ST000880 negative
mode, respectively.
Collection of Multiple Criteria for Comprehensive

Assessment. Assessment a: Cluster Analysis of Sample
Grouping. In the multiclass metabolomics analysis, cluster
analysis of sample grouping was performed using the K-means
plot (K is the number of classes in the studied dataset). First,
differential markers of multiclass metabolomics data were
identified using a specific biomarker discovery method.
Second, K-means clustering was applied to describe the
differentiation among different sample groups.22 An obvious
differentiation in this clustering represented the clear
separation among different classes for the differential markers.
Therefore, the biomarker discovery method used for
identifying markers was considered to be performing well.
Third, a well-established measure (purity) was calculated based
on eq 1 and selected to assess the clustering of different
classes.23,24

=
=

purity
N

n1
max( )

i

K

j
i
j

1 (1)

The dataset contains N data objects, K denotes the number
of clusters, and nij is the number of objects in the ith cluster
belonging to the jth category. If purity was higher, the
clustering result was more accurate. The worst clustering
outcome has a purity close to 0, while the perfect clustering
result has a purity value close to 1.

Assessment b: Biomarker Consistency in Multiple
Subgroups. For the same research issue, the low reproduci-
bility of biomarkers identified in different subsets can raise
doubt about the consistency of the result.25 The reason for this
low reproducibility of biomarkers is attributed to the
inappropriateness of the methods for biomarker discovery.26,27

Thus, the reproducibility of biomarkers discovered in different
subsets is regarded as an essential criterion for assessing the
performance of biomarker discovery methods.28,29 For this
criterion, a multiclass dataset was divided into three different
sub-datasets by random sampling. Here, stratified random
sampling was applied, which involved the division of all
samples into different strata (multiple classes), and samples
were selected randomly from each stratum. Therefore, the
input data can be divided into construct three subgroups using
stratified random sampling. Second, the differential metabolic
markers were identified from each subgroup using a specific
biomarker discovery method. There were three sets of
biomarkers in three subgroups using each biomarker discovery
method. Third, a powerful measure, relative weighted
consistency (CWrel), was applied to quantitatively assess the
consistency of different sets of biomarkers in three subgroups
based on eq 2.30 It has been reported that CWrel is a powerful
measure for biomarker consistency in multiple subgroups from
an overall perspective to avoid the subset-size-biased
problem.30

=
| | + +

| | + +
( )

CWrel S Y

Y N D F N D

Y H n N H D N D

( , )

( 1)

( ( ) )
f Y f

2 2

2 2 2 (2)

Y = {f1, ..., f |Y|} is the set of all features of size |Y|, S = {S1, ..., Sn}
is a system of n feature subsets, and Ff denotes the number of
occurrences of feature f ∈ Y in system S. N denotes the total
number of occurrences of any feature in system S. This study
denotes D = N % |Y| and H = N % n for simplicity. The CWrel
value is between 0 and 1. If the CWrel value was close to 1, it
indicated the highest consistency of the biomarkers discovered
in multiple subgroups.

Assessment c: Accuracy in Classification Model. An
important goal of multiclass metabolomics is to identify and
validate a set of biomarkers that can be applied to classify
multiple classes.31 First, the differential markers were identified
using a biomarker discovery method for the studied multiclass

Table 2. Four Benchmark Datasets Used for the Comprehensive Assessment of Biomarker Discovery and Classification
Methods in This Study

dataset ID no. of classes no. of samples no. of metabolites in raw data no. of metabolites in normalized data type refs

ST000584 positive mode 5 210 15,447 753 zebrafish 20
ST000584 negative mode 5 210 8781 609 zebrafish 20
ST000880 positive mode 4 47 11,265 6259 mouse 21
ST000880 negative mode 4 47 10,677 4448 mouse 21
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metabolic dataset. Second, using these identified metabolic
markers, a classification model was constructed by a
classification method. Third, the AUC (area under the curve)
value of the ROC (receiver operating characteristic) curve in
the classification model was calculated using the multiROC R
package.32 The classification accuracy of the model con-
structed using the combination of a biomarker discovery
method and a classification method was assessed using the
AUC value.33,34 The one-vs-rest strategy was used in the
multiclass classification problem by splitting it into one binary
classification problem per class. The average AUC value of all
binary classification models was applied in the multiclass
metabolic dataset. If a classifier achieves high classification
performance, the AUC value is large (close to 1).
Comprehensive Assessment for Biomarker Discovery

and Classification Methods. The detailed flowchart for this
study is shown in Figure 1. Five biomarker discovery methods
and nine classification methods were assessed using the
collective benchmark datasets (Table 2). The comprehensive
assessment was performed using representative measures under
multiple criteria from multiple perspectives.16 In particular, the
purity, CWrel, and AUC values were measured for Assessment
a, Assessment b, and Assessment c, respectively. To assess the
robustness of different models, the influence of the size of
biomarkers should be examined during the assessment of
biomarker discovery and classification methods. Eleven sets
with different sizes of biomarkers (top 20, 50, 100, 150, 200,
250, 300, 350, 400, 450, and 500) were generated repetitively.
First, purity and CWrel values were applied to assess the
performance of five biomarker discovery methods based on

four benchmark datasets. Under each criterion, the purity or
CWrel values for five methods were used to construct five 11-
dimensional vectors for each benchmark dataset. Second, the
AUC value was applied to assess the performance of 45
strategies by combining the biomarker discovery method and
classification method. Under this criterion, the AUC values for
45 strategies were applied to forty-five 11-dimensional vectors
for each benchmark dataset. Third, hierarchical clustering was
used to measure the relationship among different methods
based on 11-dimensional vectors using R language. In the
hierarchical clustering, the Manhattan distance was applied to
seek the relationship between any two methods, and Ward’s
minimum variance method was applied to reduce total within-
cluster variance to the maximum extent.35 The iTOL
(Interactive Tree Of Life)36 tool was applied to draw the
graph illustrating the relationship of different methods. As a
result, the strategies that performed consistently well were
identified and used to construct a stable and reliable
classification model for multiclass metabolomics.

■ RESULTS AND DISCUSSION
Assessment of Biomarker Discovery Methods Using

Cluster Analysis of Sample Grouping. To ensure the
systematic assessment of biomarker discovery methods, four
multiclass metabolic benchmarks were collected and named
ST000584 positive mode, ST000584 negative mode,
ST000880 positive mode, and ST000880 negative mode in
Table 2. In these benchmarks, the number of samples varied
from dozens to hundreds, and the number of metabolites
varied from hundreds to thousands. The various sizes of these

Figure 1. Detailed flowchart in this study included the collection of benchmark datasets for multiclass metabolomics, the collection of biomarker
discovery methods and classification methods, and the comprehensive assessment using multiple criteria.
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benchmarks can support the systematic evaluation of these
biomarker discovery methods. In particular, all studied
methods were evaluated using cluster analysis of sample
grouping under assessment a, which was quantitatively
measured using the purity value. As shown in Supplementary
Table S1, the performance of all biomarker discovery methods
based on four benchmarks was assessed by cluster analysis of
sample grouping under assessment a. For each benchmark
dataset, the purity values among different sizes (top 20, 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500) of biomarkers
were used to construct five 11-dimensional vectors for five
biomarker discovery methods. These five 11-dimensional
vectors using each benchmark were applied to assess the
relationships among the performance of different methods.
These relationships were studied based on hierarchical

clustering using the 11-dimensional vectors. The results of
hierarchical clustering among the five biomarker discovery
methods based on the ST000584 positive mode, ST000584
negative mode, ST000880 positive mode, and ST000880
negative mode are shown in Figure 2A−D, respectively. The
methods with similar performance were clustered together to
discover consistently well-performing methods irrespective of
the number of biomarkers. Methods with superior, good, and
poor performance were colored orange, light orange, and gray,
respectively. The results indicate that the methods exhibiting
superior performance conflict when using different benchmark
datasets. In Figure 2A, the KWT, SVM-RFE, and RF were
identified as well-performing methods using the dataset of

ST000584 positive mode. In Figure 2B, PLS-DA, KWT, RF,
and ANOVA were identified as well-performing methods using
the dataset of ST000584 negative mode. In Figure 2C, RF,
KWT, ANOVA, and PLS-DA were identified as well-
performing methods using the dataset of ST000880 positive
mode. As shown in Figure 2D, the KWT, RF, and ANOVA
were identified as well-performing methods using the dataset of
ST000880 negative mode. Among these well-performing
methods using these benchmarks, KWT and RF were
consistently well-performing in four benchmark datasets
under the criterion of cluster analysis of sample grouping.
Similarly, ANOVA, PLS-DA, and SVM-RFE were also
identified from three datasets, two datasets, and one dataset,
respectively. Using raincloud plots, the purity values for these
methods are illustrated in Figure 3A−D for the datasets of
ST000584 positive mode, ST000584 negative mode,
ST000880 positive mode, and ST000880 negative mode,
respectively. The purity values of KWT in the raincloud plot
were consistently higher than those of the other methods from
the four raincloud plots.
Assessment of Biomarker Discovery Methods by

Biomarker Consistency in Multiple Subgroups. Based
on four benchmark datasets of multiclass metabolomics (Table
2), the performance of all biomarker discovery methods was
evaluated using biomarker consistency in multiple subgroups.37

Under this criterion, the performance of all methods was
quantitatively measured using the CWrel value. As illustrated in
Supplementary Table S2, the CWrel values of biomarker

Figure 2. Clusters were performed for biomarker discovery methods assessed by assessment a (cluster analysis of sample grouping) and assessment
b (biomarker consistency in multiple subgroups). Based on five 11-dimensional vectors for different sizes (top 20, 50, 100, 150, 200, 250, 300, 350,
400, 450, and 500) of biomarkers, purity, and CWrel values were applied under assessment a and assessment b, respectively. Clusters of purity values
were performed using the dataset of (A) ST000584 positive mode, (B) ST000584 negative mode, (C) ST000880 positive mode, and (D)
ST000880 negative mode. Clusters of CWrel values were performed using the dataset of (E) ST000584 positive mode, (F) ST000584 negative
mode, (G) ST000880 positive mode, and (H) ST000880 negative mode. Each cell can represent purity or CWrel value for one biomarker discovery
method. The methods with superior, good, and poor performance are colored orange, light orange, and gray, respectively.
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discovery methods based on four benchmarks are fully
provided. For each benchmark dataset, the CWrel values
among different sizes (top 20, 50, 100, 150, 200, 250, 300, 350,
400, 450, and 500) of biomarkers were applied to construct
five 11-dimensional vectors for five biomarker discovery
methods. These five 11-dimensional vectors using each
benchmark were applied to assess the relationships among
the performance of different methods under assessment b.
Using hierarchical clustering, the relationships among the

five biomarker discovery methods are shown in Figure 2E−H
for the datasets of ST000584 positive mode, ST000584
negative mode, ST000880 positive mode, and ST000880
negative mode, respectively. The methods with similar
performance were clustered together, helping to discover the
methods irrespective of the different number of biomarkers.
Methods with superior, good, and poor performance were
colored orange, light orange, and gray, respectively. As a result,
the well-performing methods assessed by biomarker consis-
tency in multiple subgroups conflict when using different
benchmark datasets. In Figure 2E, PLS-DA, RF, and SVM-RFE
were identified as well-performing methods using the dataset of
ST000584 positive mode. In Figure 2F, PLS-DA, SVM-RFE,
and RF were identified as well-performing methods using the
dataset of ST000584 negative mode. In Figure 2G, KWT, PLS-
DA, and SVM-RFE were identified as well-performing methods
using the dataset of ST000880 positive mode. In Figure 2H,
KWT, PLS-DA, and SVM-RFE were identified as well-
performing methods using the dataset of ST000880 negative

mode. Among these well-performing methods under the
criterion of biomarker consistency in multiple subgroups,
PLS-DA and SVM-RFE were consistently well-performing in
four benchmark datasets. Similarly, KWT and RF were
identified simultaneously in two benchmark datasets. Using
raincloud plots, the CWrel values for each method are
illustrated in Figure 3E−H for ST000584 positive mode,
ST000584 negative mode, ST000880 positive mode, and
ST000880 negative mode, respectively. The CWrel values of
PLS-DA in the raincloud plot were consistently higher than
those of other methods from the four raincloud plots.
Assessment of Biomarker Discovery and Classifica-

tion Methods by Classification Accuracy. The perform-
ance of strategies formed by combining the biomarker
discovery method and classification method was assessed
using the accuracy of the classification model using four
benchmark datasets (Table 2). Under assessment c, AUC
values were applied for quantitative measurement of
classification accuracy. As shown in Supplementary Table S3,
the performance of all combined strategies is fully provided
based on the accuracy in the classification model using four
benchmarks. For each benchmark dataset, the AUC values
among different sizes (top 20, 50, 100, 150, 200, 250, 300, 350,
400, 450, and 500) of biomarkers were used to construct forty-
five 11-dimensional vectors for 45 strategies combining the
biomarker discovery method and classification method. These
forty-five 11-dimensional vectors using each benchmark were
applied to assess the relationships among the performance of

Figure 3. Raincloud plots for the assessment performance of biomarker discovery methods. The performance was assessed using purity values
under assessment a (cluster analysis of sample grouping) using the dataset of (A) ST000584 positive mode, (B) ST000584 negative mode, (C)
ST000880 positive mode, and (D) ST000880 negative mode. The performance was assessed using CWrel values under assessment b (biomarker
consistency in multiple subgroups) using the datasets of (E) ST000584 positive mode, (F) ST000584 negative mode, (G) ST000880 positive
mode, and (H) ST000880 negative mode.
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different strategies. Using hierarchical clustering, the relation-
ships among 45 combining strategies are shown in Figure 4A−
D for the datasets of ST000584 positive mode, ST000584
negative mode, ST000880 positive mode, and ST000880

negative mode, respectively. For plots of hierarchical
clustering, strategies with superior, good, and poor perform-
ance were colored orange, light orange, and gray, respectively.
The intersection of the superior strategies using four different

Figure 4. Clusters of performance assessment were performed for 45 strategies by combining the biomarker discovery method and classification
method under assessment c (accuracy in classification model). AUC values were applied under assessment c based on five eleven-dimensional
vectors for different sizes (top 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500) of biomarkers. Clusters of AUC values were performed
based on the dataset of (A) ST000584 positive mode, (B) ST000584 negative mode, (C) ST000880 positive mode, and (D) ST000880 negative
mode. Each cell can represent the AUC value for one combining strategy. The strategies with superior, good, and poor performance are colored
orange, light orange, and gray, respectively.
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benchmarks was shown to be consistently well-performing
strategies.
Discovering Consistently Well-Performing Classifica-

tion Models under All Criteria. Using four benchmarks,
there were 13 strategies with superior performance, combining
the biomarker discovery method and classification method.
These strategies included ANOVA + KNN, ANOVA + PLS,
KWT + bagging, KWT + KNN, KWT + PLS, KWT + SVM,
PLS-DA + bagging, PLS-DA + PLS, PLS-DA + SVM, RF +
bagging, RF + KNN, RF + SVM, and SVM-RFE + bagging.
Except for ANOVA, other methods of biomarker discovery

including KWT, PLS-DA, RF, and SVM-RFE were identified as
well-performing methods under assessment a and assessment
b. Using circular bar plots, detailed information on these
superior strategies using the measured metric under each
assessment criterion is illustrated in Figure 5. These combining
strategies under three assessment criteria are shown in Figure
5A−D for the dataset of ST000584 positive mode, ST000584
negative mode, ST000880 positive mode, and ST000880
negative mode, respectively. These strategies using purity,
CWrel, and AUC values under assessment a, assessment b, and
assessment c were colored blue, red, and green, respectively.

Figure 5. Circular bar plots of 13 strategies with superior performance by combining biomarker discovery methods and classification methods
assessed by assessment c (accuracy in classification model). Each strategy of purity, CWrel, and AUC value is colored blue, red, and green,
respectively. Circular bar plots were generated using the dataset of (A) ST000584 positive mode, (B) ST000584 negative mode, (C) ST000880
positive mode, and (D) ST000880 negative mode.
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For these benchmark datasets, the sample number varied from
dozens to 100, including four or five sample classes, and the
number of metabolites varied from 600 to 6000. The diversity
of the benchmarks ensured the comprehensive assessment of
the combined strategies.
From the blue areas of Figure 5, all 13 combining strategies

performed consistently well under assessment a (cluster
analysis of sample grouping). The range of purity values varied
from 0.71 to 0.76 for the dataset of ST000584 positive mode,
and the purity values were greater than 0.80 for the dataset of
ST000584 negative mode and ST000880 positive mode. For
the ST000880 negative mode, the purity values of four
combining strategies varied from 0.73 to 0.79, including PLS-
DA + bagging, PLS-DA + PLS, PLS-DA + SVM, and SVM-
RFE + bagging, and the values of others were greater than 0.80.
From the red areas of Figure 5, the range of CWrel values for
all 13 combining strategies was widely distributed from 0.08 to
0.70 under assessment b (biomarker consistency in multiple
subgroups). In particular, three combining strategies, including
PLS-DA + SVM, PLS-DA + PLS, and PLS-DA + bagging,
performed consistently well with CWrel values greater than
0.30. As indicated by the green areas of Figure 5, all 13

combining strategies performed consistently well under
assessment c (accuracy of classification model) with CWrel
values greater than 0.98 for all benchmarks.
The combining strategy, PLS-DA + bagging, was selected as

an example to visualize the performance under three
assessment criteria based on four benchmark datasets. The
top 100 biomarkers of the PLS-DA model were applied for a
comprehensive assessment. The results of the assessment
under three criteria are shown in Figure 6A−D for the dataset
of ST000584 positive mode, ST000584 negative mode,
ST000880 positive mode, and ST000880 negative mode,
respectively. In Figure 6A1−D1, samples of different groups
were separated in the cluster analysis using the K-means
algorithm. The purity values in cluster analysis of sample
grouping were 0.74, 0.87, 0.91, and 1.00 for four benchmarks.
In Figure 6A2−D2, the overlap of markers among the three
subgroups was 42, 66, 15, and 23 for the four benchmarks. The
CWrel values under the criterion of biomarker consistency in
multiple subgroups were 0.56, 0.77, 0.28, and 0.36 for different
benchmark datasets. In Figure 6A3−D3, the AUC value in the
ROC curve under the criterion of accuracy in the classification
model was 0.99, 1.00, 1.00, and 1.00 for four different

Figure 6. Results of assessment performance for the combining strategy (PLS-DA + bagging) under three criteria using benchmark datasets. For
the dataset of (A) ST000584 positive mode, the plots of results assessed using assessment a (cluster analysis of sample grouping), assessment b
(biomarker consistency in multiple subgroups), and assessment c (accuracy in classification model) are shown in A1, A2, and A3, respectively. For
the dataset of (B) ST000584 negative mode, the plots of results assessed using assessment a, assessment b, and assessment c are shown in B1, B2,
and B3, respectively. For the dataset of (C) ST000880 positive mode, the plots of results assessed using assessment a, assessment b, and assessment
c are shown in C1, C2, and C3, respectively. For the dataset of (D) ST000880 negative mode, the plots of results assessed using assessment a,
assessment b, and assessment c are shown in D1, D2, and D3, respectively.
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benchmarks. Therefore, these 13 combined strategies of the
biomarker discovery method and classification method
consistently performed well under multiple criteria for
multiclass metabolomics.
The strategies with superior performance were identified

using the comprehensive assessment of three measures based
on four different benchmark datasets. Among these superior
strategies, three biomarker discovery methods (KWT, PLS-
DA, and RF) were discovered in more than three combined
strategies. Four classification methods (bagging, KNN, PLS,
and SVM) were discovered in more than three combined
strategies. The advantages and superior performance of these
methods have been reported in many kinds of studies. The
performance of KWT was more robust against departures from
the assumption of the equality of variance.38 When the sparsity
of the data grows increasingly faster, it is easier for PLS-DA to
detect the strong correlation between the signal features for
class members.39 Using the sum of the decisions, RF has
consistently lower generalization errors than others.40 For
bagging, the advantage is that multiple weak learners can
provide stability, increase accuracy, and avoid overfitting
comparing to a single strong learner.41 KNN has many
advantages for the classification task without any assumption
for the distribution of a large number of training data.42 PLS is
particularly useful when predictor variables are highly
correlated by extracting a set of latent factors.43 By obtaining
a hyperplane with the greatest distance to the nearest training
data of any class, SVM is suitable for classification with higher
speed and better performance.44

This study performed a critical assessment of biomarker
discovery and classification methods for multiclass metab-
olomics. However, there were some limitations. First, more
benchmark datasets should be applied to assess the perform-
ance of these biomarker discovery and classification methods.
Second, three assessment measures (cluster analysis of sample
grouping, biomarker consistency in multiple subgroups, and
accuracy in classification model) were applied for a
comprehensive assessment of the biomarker discovery and
classification methods. The level of correspondence between
detected biomarkers and spike-in metabolites can be used to
assess different methods. However, it is difficult to annotate the
biomarkers for the benchmark datasets from the public
database in this study. In the future, experimental data
including spike-in metabolites are necessary to assess the
level of correspondence between detected biomarkers and
spike-in metabolites. Third, the superior strategies of
combining biomarker discovery and classification methods
might be slightly inconsistent due to the unique attributes of
the input data. In the future, a computational tool is still
needed to identify the appropriate biomarker discovery and
classification method for multiclass metabolomics.

■ CONCLUSIONS
In this study, a critical assessment was performed for
biomarker discovery and classification methods in multiclass
metabolomics. Five biomarker discovery methods and nine
classification methods were assessed based on four benchmark
datasets. The comprehensive assessment was performed using
three assessment criteria: assessment a (cluster analysis of
sample grouping), assessment b (biomarker consistency in
multiple subgroups), and assessment c (accuracy in classi-
fication model). As a result, 13 strategies combining the
biomarker discovery method and classification method were

discovered to be strategies with superior performance. In
conclusion, this study can provide clues for constructing a
classification model for multiclass metabolomics.
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