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BSTRACT 

ibonucleic acids (RNAs) involve in various 

h ysiological / pathological pr ocesses b y interacting 

ith proteins, compounds, and other RNAs. A variety 

f powerful computational methods have been de- 
eloped to predict such valuable interactions. How- 
ver, all these methods rely heavily on the ‘digitaliza- 
ion’ (also known as ‘encoding’) of RNA-associated 

nteracting pairs into a computer-recognizable de- 
criptor. In other w or ds, it is ur gentl y needed to 

a ve a po werful tool that can not only represent 
ach interacting partner but also integrate both 

artners into a computer-recognizable interaction. 
erein, RNAin coder (deep learning-based encoder 

or RNA-associated interactions) was therefore pro- 
osed to (a) pr o vide a comprehensive collection of 
NA encoding features, (b) realize the representa- 

ion of any RNA-associated interaction based on 

 well-established deep learning-based embedding 

trategy and (c) enable large-scale scanning of all 
ossib le f eature combinations to identify the one of 
ptimal performance in RNA-associated interaction 

rediction. The effectiveness of RNAin coder was ex- 
ensively validated by case studies on benchmark 

atasets. All in all, RNAin coder is distinguished for 
ts capability in pr o viding a more accurate represen- 
ation of RNA-associated interactions, which makes 

t an indispensable complement to other available 

ools. RNAin coder can be accessed at https://idrblab. 
rg/ rnaincoder/ 
r  

m
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RAPHICAL ABSTRACT 

NTRODUCTION 

ibonucleic acids (RNAs) are mainly known to function 

s catalytic molecules in gene expression ( 1–3 ) and play 

undamental roles in the regulation of di v erse biological 
nd pathological processes ( 4–6 ). Considerable r esear ch 

as proved that the interactions between RNA and other 
olecules including RNAs, proteins and compounds, are 

rucial to RNAs’ functions ( 7–9 ). Related studies have 
ained huge momentum and spawned the de v elopment 
f a variety of powerful computational methods to pre- 
ict such valuable interactions ( 8 , 10 , 11 ). All these methods
el y heavil y on the ‘digitalization’ (also known as ‘encod- 
ng’) of RNA-associated interacting pairs into a computer- 
eco gnizable descriptor ( 12 ), w hich asks for the de v elop-
ent of functional tools that can digitalize RNAs, proteins 

nd compounds ( 13–16 ). 
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So far, various methods / tools aiming at accurately and
efficiently digitalizing different types of molecules have been
constructed ( 17–20 ). PROFEAT is a widely-used w e b server
that can compute a total of 11 feature groups of popular
descriptors for proteins and peptides ( 17 ). PseKRAAC has
been de v eloped to generate various kinds of pseudo amino
acid compositions ( 18 ). PaDEL-Descriptor works as open-
sour ce softwar e tha t calcula tes 797 molecular descriptors
and 10 types of fingerprints with multiple frequently-used
user interfaces ( 19 ). Mordred is a molecule descriptor cal-
cula tor tha t genera tes > 1800 descriptors ( 20 ). Besides these
computational tools aiming primarily at encoding a certain
type of molecule, there are other tools with hybrid functions
( 21 , 22 ). For example, PyDPI and Rcpi are standalone pack-
ages used for computing protein and small molecule fea-
tures to study pr otein–pr otein interactions and compound-
protein interactions ( 21 , 22 ). 

Among these existing tools, some focus on encoding one
type of molecule, such as protein, compound and RNA, and
the others ar e mer ely used to encode interaction between
protein and compound ( 17–19 , 21 , 22 ). Howe v er, ther e ar e
currently no tools to encode RNA-associated interactions.
Moreover, to the best of our knowledge, the encoding strate-
gies in the servers encoding RNA are far from comprehen-
si v e ( 23 , 24 ). In other words, it is urgently needed to have
a powerful tool for studying RNA-associated interactions,
which can not only describe RNA and its interacting part-
ners but also integrate both molecules into an interacting
pair ( 25 ). Howe v er, no such tool has been available yet. 

Herein, RNAin coder was therefore proposed to (a) pro-
vide a comprehensi v e collection of RNA encoding fea-
tures (including sequence-intrinsic, physicochemical and
structure-based ones), (b) realize the representation of any
RNA-associated interaction based on a well-established
deep learning-based embedding strategy and (c) enable
large-scale scanning of all possible feature combinations to
identify the one of optimal performance in RNA-associated
interactions prediction. The usefulness of RNAin coder was
e xtensi v ely e xhibited by three case studies in the last sec-
tion of this work. All in all, when comparing with the strate-
gies applied in the original publications, RNAin coder con-
sistently achie v ed better predicti v e performances of RNA-
associated interactions. RNAin coder was freely available at
https://idrblab.org/rnaincoder/ and the local version was re-
leased at https://github.com/idrblab/rnaincoder/ . 

MATERIALS AND METHODS 

Collection of the comprehensive strategies for encoding RNA

Currentl y, 380 RN A descriptors commonl y a pplied in the
RNA encoding process were collected and integrated into
RNAin coder, which included 10 encoding feature groups, as
shown in Table 1 . These feature groups were grouped into
three categories: 177 sequence-intrinsic features (subdivided
into six feature groups), 195 physicochemical features (sub-
divided into three feature groups) and eight structure-based
features (belonging to one feature group). 

The sequence-intrinsic features enrolled in this study in-
cluded six feature groups: codon related (CDR), open read-
ing frame (ORF), guanine–cytosine related (GCR), K -mer
(KME), global descriptor (GBD) and entropy density re-
lated (EDT). Specificall y, w hen the length of the RNA se-
quence was over 200nt, the Fickett score (a subgroup of
CDR), could achie v e 94% sensiti vity and 97% specificity
for the identification of long non-coding RN A (lncRN A)
( 26 ). The ORF was a feasible and meaningful RNA fea-
ture group on account of a long and high-quality ORF for
the protein-coding transcript ( 24 ). KME was a simple ap-
proach to encoding RNA sequences through the occurrence
frequencies of k neighboring nucleic acids and has been suc-
cessfull y a pplied to the functional classification of lncRNAs
( 27 ). Besides, GCR, GBD and EDT have shown effective
enhancement in RNA prediction ( 28 ), classification (7) and
annotation ( 29 ). 

Physicochemical featur es wer e descriptors r elated to
RNA and its product. Physicochemical features applied
in this study included three feature gr oups: Electr on-ion
interaction pseudopotential (EIIP) based spectrum fea-
tures (EBS), nucleotide related (NTR) and pseudo pro-
tein related (PPR). To be specific, EIIP values were in-
dications of the energy of delocalized electrons in nu-
cleotides ( 28 ). NTR contained autocorrelation of din-
ucleotide features and pseudo dinucleotide composition
(PseDNC). Autocorrelation of dinucleotide features was
the correlation of identical physicochemical features be-
tween two nucleotide residues separated by a certain dis-
tance along the RNA sequence ( 30 ). PseDNC incorpo-
rated three angular parameters (twist, tilt and roll) and
three translational parameters (shift, slide and rise) physic-
ochemical features ( 31 ). The calculation process of PPR
consisted of two steps: (a) All RNA sequences were trans-
formed to corresponding amino acid sequences or pseudo-
protein sequences according to the genetic code. (b) Cal-
culate the physicochemical features of transformed protein
sequences ( 32 ). 

Structur e-based featur es wer e se v eral descriptors that de-
picted the established RNA secondary and tertiary struc-
tur e, which wer e essential f or man y RNA functions ( 33 ).
Particularly, the medium-scale feature and high-scale fea-
ture of RNA secondary structure could be well-displayed
in dot-bracket notation ( 34 ). Ther efor e, structur e-based fea-
tur es wer e critical to RNA r epr esentation. 

The full names and descriptions of the 380 RNA encod-
ing feature mentioned above were provided in Supplemen-
tary Table S1. The detailed descriptions and application of
these encoding methods mentioned above were provided in
Supplementary Methods, which included the correspond-
ing parameters, as shown in Supplementary Tables S2–S4. 

Collecting the strategies for encoding protein and compound 

RNAin coder also provided the encoding features of proteins
and compounds for the r esear ch of RNA-associated inter-
actions, including RNA-protein and RNA-compound in-
teractions. Both types of encoding featur es wer e based on
pre vious pub lications which de v eloped a tool for calculat-
ing structural and physicochemical features of proteins ( 17 )
and compounds ( 19 ). The protein encoding features were
grouped in the same way as RNA encoding features because
of the similar principle between RNA and protein ( 35 , 36 ). 

https://idrblab.org/rnaincoder/
https://github.com/idrblab/rnaincoder/
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Table 1. The comprehensi v e set of RNA encoding features with their brief descriptions 

Feature group Feature subgroup 
No. of 
features Brief description 

Sequence-intrinsic features 
Codon related Fickett score 1 It is a score to evaluate the variety of nucleotide positions 

and compositions between mRNAs and lncRNAs ( 26 ). 
Stop codon related features 4 Itis a set of features related to stop codon, including stop 

codon count, frequency, frame score and frequency frame 
score ( 73 ). 

Open reading frame Basic ORF features 4 This feature subgroup is calculated mainly based on the 
most basic information of open reading frames in RNA 

sequences, including length, coverage, etc ( 74 ) . 
Entropy density profiles on ORF 20 It is a systematic linguistic description of RNA sequence 

based on short motif frequency and Shannon entropy 
theory of artificial language ( 75 ). 

Measurement of hexamer on ORF 7 It is a set of features to estimate the relati v e degree of 
hexamer usage bias and distinguish between mRNA and 
non-coding RNA ( 76 ). 

Guanine-cytosine 
related 

Guanine-cytosine related 7 This feature subgroup describes the efficiency of gene 
expression at a time of increased stead y-sta te mRNA le v els 
and efficient transcription ( 77 ). 

K -mer Transcript k -mer content 84 It is a commonly applied approach to code RNA sequences 
through the occurrence frequencies of k neighboring 
nucleic acids ( 78 ). 

Global descriptor Global transcript sequence 
descriptors 

30 Itis a computing strategy for nucleotide composition, 
transition and distribution r epr esentation in an RNA 

sequence ( 79 ). 
Entropy density 
related 

Entropy density profiles on 
transcript 

20 It is a model used to describe the properties of RNA 

transcript in the 20-dimensional phase space for calculating 
the coding potential based on amino acid usage ( 75 ). 

Physicochemical features 
Pseudo protein 
Related 

Pseudo protein related 5 It is a set of features to describe the physicochemical 
properties of pseudo protein translated from RNA by 
computational methods ( 80 ). 

Nucleotide related Autocorrelation of dinucleotide 136 It is an approach to measuring the autocorrelation between 
the same properties or cross-covariance between two 
different RNA properties ( 81 ). 

Pseudo dinucleotide composition 46 It is an approach to incorporating the contiguous local and 
global sequence-order information into the feature vector 
of the RNA ( 31 ). 

EIIP-based spectrum EIIP-based spectrum 8 It is a set of features that r epr esent RNA sequence via 
electron-ion interaction pseudopotential values for each 
nucleotide ( 82 ). 

Structur e-based featur es 
Secondary Structure Multi-scale secondary Structure 

information 
8 Itis a feature subgroup that r epr esents RNA from three 

le v els: stability, secondary structure elements and 
multi-scale secondary structure-deri v ed sequences ( 83 ). 
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Table S5. 
eatures for encoding protein. Specifically, 188 encod- 
ng featur es fr equently adopted in protein function r e- 
ear ch wer e collected in RNAin coder, which included 20 

equence-intrinsic features, 147 physicochemical features, 
nd 21 structure-based features, as shown in Supplementary 

able S5. 
Sequence-intrinsic features transformed protein se- 

uences into computer-recognizable matrices, including 

mino acid composition and position specific scoring. 
mino acid composition r epr esented the content of each 

ind of amino acids and was used to predict protein family 

 37 ). 
Physicochemical features covered the physicochemical 

haracteristics of amino acids. The physicochemical fea- 
ures involved in this study were based on an electric charge, 
ydrophobicity , polarity , polarizability , solvent accessibil- 
ty, surface tension and van der Waals volume. These de- 
criptors were based on eight kinds of physicochemical fea- 
ures and had been applicated to analysis of protein arginine 
ethylation ( 38 , 39 ). 
Structur e-based featur es described the structural char- 

cteristics of amino acids and peptides. These descriptors 
ere mainly based on secondary structure and related sol- 
ent accessibility, which had been used for the prediction of 
rotein–RNA interactions using machine learning models 
 40 ). 

eatures for encoding compound. Furthermore, the 
ncoding features of compounds in RNAin coder were 
lso grouped into three classes according to a previous 
ublication ( 19 ). In particular, 2756 descriptors frequently 

dopted in small molecule r esear ch wer e collected, which 

ncluded 1444 composition topology descriptors, 431 

tereo-structural descriptors and 881 small molecules 
ubChem fingerprints, as shown in Supplementary 
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The composition topology descriptors involved in this
stud y included autocorrela tion descriptors, Barysz ma trix
descriptors , constitutional descriptors , physicochemical de-
scriptors and topology-related descriptors. Composition
topological descriptors such as physicochemical descriptors
had been used to predict drug aqueous solubility ( 41 ). 

3D-shape functionality descriptors contained 3D func-
tionality such as 3D autocorrelation, charged partial sur-
face area, gravitational index, length over breadth, moment
inertia, Petitjean shape index and radial distribution func-
tion. 3D autocorrelation descriptors such as spatial auto-
correlation descriptors had been de v eloped for molecular
modeling ( 42 ). 

Small molecule fingerprints used fixed-length arrays to
digitize different compounds. PubChem fingerprint was
mainl y a pplied in this study. PubChem fingerprint charac-
terized small molecules by the number of functional groups
and had been used to present drug chemical structure in side
effect prediction ( 43 ). 

Deep learning-based embedded feature integration 

The deep learning methods have made outstanding contri-
butions in many RNA-related research fields ( 44 , 45 ) and
keep an upward tendency in the application of RNA-
associated interactions during the era of big data ( 29 , 46–
48 ). The deep learning-based unsupervised learning algo-
rithm can effecti v el y reduce the dimensions of RN A encod-
ing features and extract more discriminati v e features in the
circumstance of insufficient prior knowledge ( 49 ). An au-
toencoder (AE) is applied to learn efficient data r epr esenta-
tions in an unsupervised manner, which included three lay-
ers: an input layer, a hidden layer and an output layer. AE-
related variant stacked AE (SAE) ( 50 ) is widely used and
has shown exceptional capacity in promoting the prediction
of RNA-associated interactions. SAE was constructed and
applied in RNAin coder, as shown in Figure 1 . 

Specifically, the SAE consisting of three autoencoders
was utilized in RNAin coder to e xtract high-le v el embedded
features from the encoding features of RNA and RNA-
interacting molecules. The embedded featur es wer e ob-
tained in the following steps: ( i ) The RNA encoding features
were taken as input to train the AE1 via back-propagation
algorithm, getting the hidden feature 1 and 1st hidden layer.
( i i) The hidden feature 1 served as the input for AE2 subse-
quently to attain the hidden feature 2 and 2nd hidden layer.
The AE3 tr aining str ategy followed the same way as AE2.
( i ii) 1st / 2nd / 3rd hidden layer from the AE1 / 2 / 3 and a clas-
sifier were incorporated as the SAE. The parameters in SAE
got fine-tuned based on the label of the training dataset and
then updated. 

The SAEs applied to extract embedded features from en-
coding features of RN A and RN A-interacting molecules
were trained respecti v ely and each AE adopted the full-
connection lay er neur al network to realize the compression
and reduction processes ( 51 ). Ultimately, the embedded fea-
tures for RN A and RN A-interacting molecules were con-
ca tena ted and fed into the downstream classifier, such as
machine learning algorithm (random forest ( 52 ), support
vector machine ( 53 ), and extreme gradient boosting ( 54 )) or
deep learning models (r ecurr ent neural networks ( 55 ) and
convolutional neural networks ( 56 )) to predict the RNA-
associated interactions. 

For proper evaluation of RNAin coder, several standard
evaluation metrics have been used, including the area un-
der the recei v er oper ating char acteristic curve (ROC-AUC),
Ma tthews correla tion coef ficient (MCC), accuracy (ACC),
precision (PRE), specificity (SP) and sensitivity (SN) . Sta-
tistical significance assessment was calculated by one-way
ANOVA with Dunnett’s post hoc test. The statistical signif-
icance was denoted by * P < 0.05; ** P < 0.01; *** P < 0.001;
**** P < 0.0001 . 

Server implementation details and r equir ed f ormat of input
files 

The RNAin coder server was hosted on a Linux server of an
Intel(R) Xeon(R) Gold 6149 3.10 GHz CPUs with 8 cores
and 64 GB of memory based on the Python w e b frame-
work of Tornado (an asynchronous networking library).
RNAin coder could be free and open to all users with no
login r equir ement and could be accessed at https://idrblab.
org/rnaincoder/ by di v erse and popular w e b browsers in-
cluding Google Chr ome , Mo zilla Fir efo x , Saf ari and Internet
Explorer 10 (or later). 

For RNA or protein encoding, the input is a set of RNA
or protein sequences in FASTA format, which can be up-
loaded as a single file. For small molecule compounds, the
input is SMILE format, which can be uploaded as single
files. For the label file of encoding RNA, the first row of
the first 2 columns should be sequentially labeled as ‘Seq-
name’ and ‘Label’, which indicate the sequence name and
class of sample respecti v ely. The sequence name should be
the RNA sequence name in the FASTA file; the class of
samples refers to different RN A classes, w hich should be
labeled with an ordinal number (e.g. 0, 1, 2, . . . ). For encod-
ing RNA-associated interaction, three files need to be up-
loaded. The first file is the RNA FASTA file and the last let-
ter of the file name must be ‘A’. The second file is an RNA or
protein FASTA file and the last letter of the file name must
be ‘B’. For the label file of RNA-associated interaction, the
first row of the first 3 columns should be sequentially labeled
as ‘A’, ‘B’ and ‘Label’, which r epr esent A sequence name, B
sequence name and the type of interaction , respecti v ely. The
A sequence name and B sequence name should be RNA or
protein sequence names in the FASTA file; the type of inter-
action refers to whether interactions between A and B exist
(existing is 1 and non-existing is 0). Various exemplar files
strictly following these r equir ements ar e fully provided and
can be directly downloaded from the RNAin coder w e bsite.
The local version of RNAin coder is provided on GitHub at
https://github.com/idrblab/rnaincoder . 

RESULTS AND DISCUSSION 

Effective r epr esentation of compr ehensive encoding str ategies
in RNAin coder 

Due to the important biological function of RNAs ( 57 , 58 ),
it remains crucial for wealthy assembled transcripts to
annota te the dif ferent classes of RN As and especiall y
to distinguish protein-coding from non-coding RNAs af-
ter high-throughput RNA sequencing ( 59–61 ). An RNA

https://idrblab.org/rnaincoder/
https://github.com/idrblab/rnaincoder
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Figure 1. The workflow of ( A ) the deep learning-based embedding strategy for RNA-associated interactions and the frame wor k of ( B ) the stacked autoen- 
coder (SAE) in RNAin coder. The stacked autoencoder consisted of three autoencoders and each autoencoder included an encoder and a decoder based 
on a multilayer per ceptron. Embedded featur es sequentially optimized by encoders in three pre-trained autoencoders would be paired and conca tena ted 
for the prediction of RNA-associated interactions. 
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lassifica tion da taset was collected from FEELnc ( 62 ) to 

valuate the capability of RNAin coder for providing com- 
rehensi v e RNA encoding fea tures. This da taset consisted 

f 10 000 mRNAs (divided into two sets of 5000 mR- 
As used for the training and testing model, respecti v ely) 

nd 10 000 lncRNAs (divided into two sets of 5000 lncR- 
As used for the training and testing model, respecti v ely). 
o illustrate the contribution of the comprehensi v e encod- 

ng features provided by RNAin coder in the prediction of 
NA coding potential, the performance of RNAin coder 
as compared with state-of-the-art tools, FEELnc ( 62 ) and 

NAsamba ( 63 ), based on the same training sets. The clas- 
ifiers were random forest and neural network model from 

EELnc and RNAsamba, respecti v ely. 
As shown in Figure 2 , the classification performance of 

ncoding fea tures genera ted by RNAin coder (bar in yellow) 
chie v ed improv ements a t AUC , MCC , ACC , PRE, SP and
N compared with FEELnc (bar in purple). Specifically, 
NAin coder obtained AUC of 0. 973, MCC of 0.852 and 

CC of 0.926. Compared with the results reproduced via 

he encoding features in FEELnc ( 62 ), the AUC, MCC, 
nd ACC achie v ed by encoding features in RNAin coder 
ave been increased by 2.27%, 4.10% and 2.37%, respec- 
i v el y. Meanw hile, RNAin coder could also improve the per- 
ormance of RNAsamba in the prediction of RNA cod- 
ng potential, as shown in Supplementary Figure S1. For 
ncoding features used in FEELnc, they ar e mer ely lim- 
ted to characterizing the RNA sequence and lack the de- 
cription of the physicochemical properties and structure of 
he RNA, which are crucial for distinguishing mRNA from 

ncRNAs ( 23 ). RNAin coder integrated a total of 380 encod- 
ng features and represented RNA from multiple perspec- 
i v es (sequence-intrinsic, physicochemical and structure- 
ased features). The encoding features used in RNAsamba 

ave been fully covered by RN Ain coder. Thus, RN Ain coder 
ot a better achie v ement in the identification of RNA 

oding potential by characterizing RNA more accurately 
han FEELnc and RNAsamba. It is demonstrated that 
NAin coder is a powerful tool to provide comprehensi v e 

ncoding strategies for the studied RNAs. 
In addition to the above evaluation of RNAin coder on 

he classification of mRNA and lncRNA, the performance 
f RNAin coder was further verified on the classification 

f mRN A and ncRN A. First, the previousl y published 

ool, RNAming, was trained based on human mRNA and 

cRN A dataset (46575 mRN A and 46269 ncRN A), and 

ested on rat mRNA and ncRNA dataset (9331 mRNA and 

331 ncRNA) for cross-species prediction ( 64 ). By directly 

dopting the classifier and the model construction strategy 

 pplied in RN Aming, a new model was constructed in our 
tudy based on those encoding features of RNAin coder. As 
llustrated in Supplementary Figure S2, comparing with the 
riginal features used in RNAming, RNAin coder’s features 
ould e xtensi v ely improv e classification performance, which 

ignificantly elevated the values of MCC, ACC and PRE by 

.6%, 3.9% and 7.5%, respecti v ely. 

uperior performance achieved by the integr ation str ategy in 

NAin coder 

NAs play a crucial role in the physiological processes 
 65 , 66 ) and pathological processes ( 67 ) interacting with 

orresponding other molecules (RNA, protein and com- 
ound). Thus, it’s necessary to further evaluate the perfor- 
ance of deep learning-based embedded feature integration 

SAE), provided by RNAin coder in the prediction of RNA- 
ssociated interactions. Taking the prediction of RNA- 
rotein interactions as an example, a lncRNA-protein in- 
eraction dataset containing 291 lncRNAs and 1460 pro- 
eins, named RPI1460, was collected from the latest pub- 
ished LPI-CSFFR ( 68 ). RPI1460 included 1460 positi v e 
airs (lncRNA-protein interacti v e pairs) and 1460 negati v e 
airs (lncRNA-protein noninteracti v e pairs). As a method 

f integrating two interacting molecules, RNAin coder 
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Figure 2. The comparison of performance between comprehensi v e encoding features provided by RNAin coder (bars in yellow) and the original encoding 
features from FEELnc ( 62 ) (bars in purple) in distinguishing protein-coding from non-coding RNAs. Their performance was compared using the metrics 
of recei v er oper ating char acteristic curve (ROC-AUC), Ma tthews correla tion coef ficient (MCC), accuracy (ACC), precision (PRE), specificity (SP) and 
sensitivity (SN) as the indicators and the classifiers from FEELnc ( 62 ). The training set and test set were all from FEELnc ( 62 ). � indicates the increase 
by RNAin coder over the original publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extr acted and integr ated them through SAE. LPI-CSFFR
applied a sample direct conca tena ted method to gener-
ate the combined features. The predicti v e performances of
RNAin coder and LPI-CSFFR were evaluated on bench-
mark datasets RPI1460 using fiv e-fold cross-validation
based on the convolutional neural networks (CNN) model
from LPI-CSFFR ( 68 ). 

As shown in Figure 3 , SAE (boxplot in yellow) displayed
a better predicti v e capacity than feature integration meth-
ods in LPI-CSFFR (boxplot in blue) based on the same en-
coding features and classification model CNN as the origi-
nal publication ( 68 ). To be specific, it was worth indicating
that the improvement of RNAin coder was obvious and the
performance of SAE obtained a great increase of AUC by
5.17%, MCC by 10.6% and ACC by 6.72%. This improve-
ment was quite considerable and was found to be statis-
tically significant. Moreover, the comprehensi v e encoding
fea tures genera ted by RNAin coder (boxplot in orange) out-
performed the encoding features in LPI-CSFFR (boxplot in
yellow) based on the same deep learning-based integration
and classifier. Meanwhile, it is clear to see in Figure 3 that
both comprehensi v e encoding features and deep learning-
based integration in RNAin coder (boxplot in orange) have
achie v ed a great improvement of AUC by 7.47%, MCC by
15.5% and ACC by 8.58% compared with the encoding fea-
tures and integration methods using in the original publica-
tion (boxplot in blue) ( 68 ) based on the same classifier. This
improvement was also found to be statistically significant. 

To further explore the r epr esentation ability of the em-
bedded feature learned by the deep learning model in the
prediction of RNA-protein interactions, a semi-supervised
dimensionality reduction method ( 69 ) and a uniform man-
ifold approximation and projection (UMAP) scatter dia-
gram were used to represent the distribution of interaction
and no interaction pairs from RPI1460, as shown in Fig-
ure 4 and Supplementary Figure S3, respecti v ely. Specif-
ically, the points in Figur e 4 A wer e the conca tena tion of
the RNA encoding features provided by RNAin coder and
the protein encoding features in LPI-CSFFR for all 1460
sample pairs. After feature extraction by SAE, the embed-
ded features of RNA and protein were conca tena ted and
presented in Figure 4 B. It could be seen that the positi v es
and negati v es in the embedded featur e space wer e mor e
clearly distributed in two clusters than those in the orig-
inal feature space. The same result can also be obtained
from the visualization of the UMAP method. These re-
sults demonstrated that using deep learning-based embed-
ded feature integration improved the feature representation
ability of RNA-associated interactions. Using the same way
to extract the RNA and protein encoding features in LPI-
CSFFR, Figure 4 c and d were produced by the above semi-
supervised reduction method ( 69 ). Supplementary Figure
S3c and S3d were also generated by the UMAP method. A
similar result illustrated that the r epr esentation of positi v e
and negati v e pairs using embedded features made the same
type of sample cluster more closely than the other type of
sample. 

From the above visualization, overlapping area was
observed and indicated that the interacting and non-
interacting pairs were not completely separated. The rea-
son might be that there were unannotated interacting pairs
in non-interacting pairs of the training set. Particularly,
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Figure 3. The comparison of performance between embedded features extracted by deep learning-based integration method from the original encoding 
features in LPI-CSFFR ( 68 ) (boxplot in b lue), embedded features e xtr acted by deep learning-based integr ation method from the original encoding features 
in LPI-CSFFR ( 68 ) (boxplot in yellow) and comprehensi v e encoding features in RNAin coder (boxplot in orange) in predicting RNA-protein interactions. 
Their performance was compared using the metrics of recei v er operating characteristic curve (ROC-AUC), Matthews correla tion coef ficient (MCC), accu- 
racy (ACC), precision (PRE), specificity (SP) and sensitivity (SN) as the indicators over 5-fold cross-validation and the classifiers from LPI-CSFFR ( 68 ). 
The statistical significance was denoted by * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001 . 
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he interacting pairs were established by calculating atom 

istances between RNA and protein, which came from 

NA-protein complexes in the protein data bank database 
 70 ). Non-interacting pairs were generated by adopting the 
riteria from published literature ( 71 ) and were not experi- 
entally validated. There might be interacting pairs among 

hese non-interacting pairs. 
Moreo ver, to pro vide a real-w orld test for further illus- 

rating the benefit of RNAin coder for users, a dataset of 
43 new interactions between 136 proteins and 3 RNAs 
hich were detected by an CRISPR-assisted RNA-protein 

nteraction detection method in the nati v e cellular con- 
ext was collected ( 72 ). Particularly, these 143 novel RPIs 
ere adopted in our study to evaluate the performance 
f our RNAin coder and the LPI-CSFFR. As shown in 

able 2 , the numbers of 3 RNAs’ real-world interaction 

ith proteins ( 54 , 46 ), and ( 43 ) were gi v en, and the predic-
ion accuracies of RNAin coder and LPI-CSFFR equaled 

o 96.3–100% and 32.6–58.7%, respecti v ely. It is clear that 
NAin coder provides significantly better performance than 

he recent method in RPI prediction, and the improve- 
ents of RNAin coder from LPI-CSFFR were found to 

e 41.3–65.1%. The detailed prediction results of these 
r eal-world’ examples wer e provided in Supplementary 

able S6. 
All in all, RNAin coder could effecti v ely enhance the pre- 

icti v e performance in the identification of RNA-associated 

nteractions using deep learning-based embedded feature 
ntegration, which learned the more discriminati v e features 
o r epr esent RNA-associated interactions. 

ood performance achieved by the large-scale scanning in 

NAin coder 

o demonstrate the variation among the best RNA en- 
oding features for different datasets, the two data sets 
entioned above were encoded by 10 individual feature 

roups in RNAin coder. As shown in Figure 5 , the best- 
erforming feature groups of two datasets were different. 
 articularly, open r eading frame (shown in Figur e 5 A) and 

 -mer (shown in Figur e 5 B) wer e the optimal feature groups
n the identification of RNA coding potential and the pre- 
iction of RNA-protein interactions, respecti v ely. 
This r esult inspir ed us to combine all encoding featur es 

total 380 dimensions) and then conduct a large-scale scan- 
ing of all possible feature combinations to identify the 
est-performing fea ture combina tion. The process of large- 
cale scanning included: (a) ranking all combined 380 RNA 

ncoding features according to the pre viously pub lished fea- 
ure ranking method ( 59 ), (b) generating 380 feature com- 
inations by iterati v ely removing the last feature according 

o the feature rank from the previous step, (c) extracting the 
mbedded feature through deep learning-based integration 

ethod (SAE) mentioned above, (d) obtaining the predic- 
i v e result using the embedded feature as the input of the 
ownstream classifier. 



W516 Nucleic Acids Research, 2023, Vol. 51, Web Server issue 

Figure 4. A semi-supervised dimensionality reduction ( 69 ) of the RNA-protein interactions dataset for ( A ) encoding features in RNAin coder, ( B ) embedded 
features extracted by deep learning-based integration method from encoding features in RNAin coder, ( C ) encoding features in LPI-CSFFR ( 68 ), ( D ) 
embedded features extracted by deep learning-based integration method from encoding features in LPI-CSFFR ( 68 ). 

Table 2. The performances of RNAin coder and the LPI-CSFFR in pre- 
dicting 143 real-world RPIs newly reported in ( 72 ) 

RNA name 

No. of 
real-world 

RPIs 
LPI- 

CSFFR RNAin coder Improvement 

XIST 54 25 (46.3%) 52 (96.3%) 50.0% 

DANCR 46 27 (58.7%) 46 (100.0%) 41.3% 

MALAT1 43 14 (32.6%) 42 (97.7%) 65.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA-associated interactions. The RNAin coder w e b server 
As shown in Figure 5 , the best-performing feature combi-
nations (shown in Supplementary Table S7) were identified
by large-scale scanning for the prediction of RNA coding
potential and RNA-protein interactions, respecti v ely. Par-
ticularly, for the identification of RNA coding potential,
the performance of the optimal feature combination (bar in
purple) achie v ed an improv ement of AUC by 2.26%, MCC
by 5.10% and ACC by 2.80% compared with the encoding
features used in the original publication ( 62 ) (bar in green),
as shown in Figure 5 c. For the prediction of RNA-protein
interactions, the performance of the optimal feature com-
bination (boxplot in blue) obtained an increase of AUC by
6.54%, MCC by 15.5% and ACC by 9.04% compared with
the encoding features used in the original publication ( 68 )
(boxplot in yellow), as shown in Figure 5 d. This increase
was also found to be statistically significant. 

All in all, based on comprehensi v e RNA encoding fea-
tures, RNAin coder effecti v ely improv ed the predicti v e per-
formance of RNA-associated interactions using a deep
learning-based embedded feature integration and a large-
scale scanning of all possible feature combinations. 

CONCLUSIONS 

The RNAin coder w e b server aims at providing an accu-
rate r epr esentation of RNA-associated interactions based
on collected comprehensi v e feature encoding methods and
deep learning-based feature integration. First, it provides
the user with comprehensi v e RNA encoding features (in-
cluding sequence-intrinsic, physicochemical, and structure-
based ones). Next, it helps the user to obtain a powerful
r epr esentation of any RNA-associated interaction based on
a well-established deep learning-based embedding strategy.
Finally, it allows the user to identify the one of optimal
feature sets by large-scale scanning of all possible feature
combinations. The w e b server pr esented her ein brings the
first free and easy-to-use computational tool for encoding



Nucleic Acids Research, 2023, Vol. 51, Web Server issue W517 

Figure 5. The performance ranking of 10 feature groups for identification of ( A ) RNA coding potential and ( B ) RNA–protein interactions. The comparison 
of performance between the best feature combination in RNAin coder and the original encoding features from pre vious pub lications ( C ) FEELnc ( 62 ) and 
( D ) LPI-CSFFR ( 68 ) for identification of RNA coding potential and RNA-protein interactions, respecti v ely. The assessed ten feature groups belong to three 
fea ture ca tegories, and the fea tur e groups color ed in cyan, or ange, and gr ay indica ted sequence-intrinsic, physicochemical, and structure-based ca tegories, 
respecti v ely. � indicates the increase by RNAin coder over the original publication. The statistical significance was denoted by * P < 0.05; ** P < 0.01; 
*** P < 0.001; **** P < 0.0001 . 
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ill assist in the advancement of RNA-related computa- 
ional methods in various downstream tasks. 
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