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Abstract

Metabolic processes play a critical role in immune regulation.
Metabolomics is the systematic analysis of small molecules
(metabolites) in organisms or biological samples, providing an
opportunity to comprehensively study interactions between
metabolism and immunity in physiology and disease. Integrating
metabolomics into systems immunology allows the exploration of
the interactions of multilayered features in the biological system
and the molecular regulatory mechanism of these features. Here,
we provide an overview on recent technological developments of
metabolomic applications in immunological research. To begin,
two widely used metabolomics approaches are compared: targeted
and untargeted metabolomics. Then, we provide a comprehensive
overview of the analysis workflow and the computational tools
available, including sample preparation, raw spectra data prepro-
cessing, data processing, statistical analysis, and interpretation.
Third, we describe how to integrate metabolomics with other
omics approaches in immunological studies using available tools.
Finally, we discuss new developments in metabolomics and its
prospects for immunology research. This review provides guidance
to researchers using metabolomics and multiomics in immunity
research, thus facilitating the application of systems immunology
to disease research.
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Introduction

Infections are significant threats to global public health (Duff

et al, 2021). Lower respiratory infections, human immunodeficiency

virus (HIV) infection, malaria, and tuberculosis are associated

with higher mortality rates (https://www.who.int/news-room/fact-

sheets/detail/the-top-10-causes-of-death; Liu et al, 2022a). The rap-

idly spreading coronavirus disease 2019 (COVID-19), caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a

potentially fatal respiratory infection (COVID-19 National Prepared-

ness Collaborators, 2022; Zhang et al, 2022). As of June 16, 2022,

the World Health Organization (WHO) reported over 530 million

confirmed cases and 6 million deaths (https://www.who.int/

emergencies/diseases/novel-coronavirus-2019). Therefore, there is

an urgent need to better understand the molecular pathophysiology

of infectious diseases, in order to inform treatment and management

strategies, including the development of new therapies. Studies have

shown that immunity has played a crucial role in protecting against

infectious diseases such as COVID-19 and HIV infection (Kardava

et al, 2018; Herzig et al, 2019; Combes et al, 2021; Schultze &

Aschenbrenner, 2021; Witkowski et al, 2021). Researchers have

observed various physiological and immunological changes, includ-

ing the complex and dynamic nature of immune responses, in

COVID-19 patients (Arunachalam et al, 2020; Woodruff et al, 2020;

Krause et al, 2021) and HIV (Ringeard et al, 2019; Campion

et al, 2021; Goh et al, 2022). Systems immunology, which comple-

ments traditional approaches, has become a valuable tool for under-

standing the complex immune responses to infectious diseases

(Dunning et al, 2019; Warsinske et al, 2019; di Iulio et al, 2021;

Koeken et al, 2021; Potapov et al, 2022).

Systems immunology explores the interactions between cyto-

kines, chemokines, cells, and molecular networks, as well as the

dynamic changes in the immune system using mathematical and

computational methodologies (Villani et al, 2018). One approach

in systems immunology is to develop mathematical models and

improve them through inference to understand the functionality

of the immune system (Eftimie et al, 2016). In recent years, vari-

ous modeling methods have been developed for immune cells,

including ordinary differential equation models (Kim et al, 2009),

partial differential equation models (Cemerski et al, 2007), the

particle-based stochastic models (Boianelli et al, 2015), the agent-

based models (Tang & Hunt, 2010), and the Boolean models

(Keef et al, 2017). Some computational tools have also been

developed for modeling a system, including GINsim (Chaouiya

et al, 2012), Boolnet (Mussel et al, 2010), Cell Collective (Helikar

et al, 2013), BioNetGen (Harris et al, 2016), and DSAIRM (Han-

del, 2020). Handel et al (2020) summarized in detail the utility of

mechanistic simulation models in the field of immunology.

Cappuccio et al (2016) reviewed the recent advancements in
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multiscale models, which can be used to describe therapeutic

treatments of complex immune diseases.

In the past decade, the rapid development of high-throughput

omics technologies has enabled researchers to obtain a large

amount of data from very limited samples, such as blood, secre-

tions, or tissue biopsies, promoting the field of systems immunology

and aiding in the exploration of the immune system (Davis

et al, 2017; Tomic et al, 2021). Several omics-based technologies,

including but not limited to epigenomics (assay for transposase-

accessible chromatin using sequencing (ATAC-Seq) for identifying

chromatin accessibility across the genome), genomics (whole-

genome sequencing or genome-wide genotyping), transcriptomics

(RNA-sequencing (RNA-Seq) for measuring levels of gene expres-

sion and transcripts), proteomics (proteomics involves the broad

applications of technologies for the identification and quantification

of proteins, protein post-translational modifications, protein–protein

interactions, and subcellular protein localization), and metabolo-

mics (untargeted and targeted mass spectrometry for measuring

metabolite levels), as well as single-cell omics analysis (measure

various molecules at the single-cell level), have been used in sys-

tems immunology (as shown in Fig 1). Unlike other omics-based

tools, metabolomics is terminally downstream of the products of the

genome and provides the closest connection to the phenotype of

cells and organisms (Clish, 2015; Wishart, 2016). Metabolites and

metabolic enzymes play an important role in the regulation of

immune cells (Artyomov & Van den Bossche, 2020). Thus, metabo-

lomics can help to understand the mechanisms of immune cell

metabolism and disease progression. Furman et al (2014) used sys-

tems analysis to identify the lipid metabolism and endocrine compo-

nents that inhibit immune system function. They also used systems

analysis and metabolomic analysis to find abnormal nucleotide

metabolism in their longitudinal cohort (Furman et al, 2017) and

showed how to use systems methods to establish a network to gain

a better understanding of a common human disease with unclear

pathogenesis (reviewed in Davis et al, 2017). Some groups have

linked immunological with metabolomic data to identify major

immunological and other changes that have occurred (Ghaemi

et al, 2019; Apps et al, 2020), which plays a critical role in further

studying pregnancy (reviewed in Davis, 2020).

Metabolomics is a technique used to analyze metabolites, which

are small molecules produced by an organism, in biological sam-

ples. It can be used to study the response of an organism to an inter-

nal (genetic) or external (environmental) stimulus (Johnson et al,

2016; Azad & Shulaev, 2019). Metabolomics has become a powerful

analytical tool in systems biology and is gaining popularity in the

field of systems immunology. For example, Abdrabou et al (2021)

used global metabolomics to identify the role of steroids as a key

class of metabolites that have an impact on the immune response of

the P. falciparum infection. Diray-Arce et al (2022) employed mass

spectrometry-based metabolomics of blood plasma and found that

Bacille Calmette-Guerin induced changes to the plasma lipidome

and lysophosphatidylcholines are relevant to vaccine immunogenic-

ity. Lee et al (2022) showed a strong interaction between plasma

metabolites and metabolic reprogramming networks in the immune

response to COVID-19. In brief, metabolomics enables researchers

to identify a key set of biomarkers by analyzing changing metabolic

patterns (Weiner et al, 2018; Shen et al, 2020; Thomas et al, 2020)

and understand the interactions between metabolic pathways and

immune responses in infectious diseases (Li et al, 2018; Chan

et al, 2019; Saez-Cirion & Sereti, 2021; Xiao et al, 2021). The rapid

development of MS and/or NMR-based methods has enabled scien-

tists to analyze thousands of metabolites and better understand the

regulation of metabolic networks in infection and other diseases

(Ulas et al, 2017; Weiner et al, 2018; Correia et al, 2022; Yan

et al, 2022). However, processing mass spectrometry (MS) and/or

nuclear magnetic resonance (NMR) data obtained from biological

Figure 1. Overview of omics-based technologies in systems immunology.

This figure shows different omics-based technologies used in systems immunology, including but not limited to epigenomics (bulk and single-cell ATAC-Seq), genomics
(whole-genome sequencing or genome-wide genotyping), transcriptomics (bulk and single-cell RNA-Seq), proteomics (label-free and label-based proteome quantifica-
tion), and metabolomics (untargeted and targeted mass spectrometry for measuring metabolite levels). These technologies offer a comprehensive understanding of the
immune system and support research in systems immunology.
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samples, as well as dealing with many background signals and

noise, can be very challenging (Han et al, 2017; Wanichthanarak

et al, 2019). So far, a large number of computational software, sta-

tistical algorithms, and databases, which are crucial for the qualita-

tive and quantitative characterization of metabolites, have been

developed, which further promotes the use of metabolomics in

immunology research and infection (Tautenhahn et al, 2012;

Wishart et al, 2018; Everett et al, 2019).

In this review, we provide an overview of metabolomics stud-

ies that investigate immunity focusing on recent technological

advances in mass spectrometry. The overall metabolomics work-

flow (as shown in Fig 2) encompasses the following steps: sam-

ple collection (the extraction and preparation of samples), data

acquisition (detection by MS or NMR), data preprocessing (the

curation of raw MS signals acquired from differential acquisition

platforms), metabolite identification (the identification and valida-

tion of metabolites from metabolome databases), data processing

(quality control samples correction, normalization, and missing

value imputation), statistical analysis (the application of feature

selection approaches to find biological biomarkers), and biological

interpretation (the interpretations of metabolic pathways and mul-

tilayer networks to understand disease mechanisms; Xia &

Wishart, 2011; Tugizimana et al, 2016; Pulendran & Davis, 2020;

Wozniak et al, 2020; Fu et al, 2022). Therefore, there are three

components that follow. First, this review compares targeted and

untargeted metabolomics and reviews recent advances in metabo-

lomics workflows, including sample preparation, raw spectra data

preprocessing, metabolomics data processing, statistical analysis,

and interpretation. Second, we introduce various computational

tools for multiomics data integration and show how recent stud-

ies have applied metabolomics in combination with other omics

approaches to immunological research. Finally, we discuss new

developments in metabolomics and their potential for further

research in immunology.

Targeted and untargeted metabolomics for
immunology research

In metabolomics research, metabolites are analyzed by extracting

compounds from plasma, urine, tissues, etc., and then identifying

and quantifying compounds using different analytical platforms

such as liquid chromatography–mass spectrometry (LC–MS), gas

chromatography–mass spectrometry (GC–MS), and NMR. There are

two main types of metabolomics approaches: targeted and untar-

geted (Jacob et al, 2019; Gonzalez-Riano et al, 2020). Targeted

metabolomics focuses on identifying specific know metabolites,

while untargeted metabolomics aims to examine a wide range of

known and unknown metabolites. Fig 3A illustrates the difference

between these two approaches.

Targeted metabolomics
The targeted metabolomics approach focuses on the analysis of spe-

cific, predetermined metabolites, as opposed to a comprehensive

Figure 2. Metabolomics workflow in immunological studies.

The general workflow includes sample collection (sample preparation and extraction), data acquisition (detection by MS or NMR), data preprocessing (the curation of
raw MS signals acquired from various acquisition platforms), metabolite identification (metabolite identification and verification using metabolome datasets), data
processing (quality control samples correction, normalization, and missing value imputation), statistical analysis (the use of feature selection techniques to identify
biological biomarkers), and biological interpretation (the interpretations of metabolic pathways and multilayer networks to understand disease mechanisms).
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analysis of all known metabolites (Johnson et al, 2016; Gross

et al, 2018). This approach primarily uses internal standards for

qualitative and quantitative analysis of compounds. In addition, the

use of isotopic internal standards can enhance the sensitivity and

accuracy of metabolite detection. The preferred analytical platform

of targeted metabolomics is multiple reaction monitoring (MRM)

with LC–MS, which is useful to quantify known metabolites. This

approach has the significant advantages of high specificity, sensitiv-

ity, and quantitative accuracy for in-depth exploration and analysis

of subsequent metabolic molecular markers and the specific meta-

bolic pathways, which play a significant role in disease research and

diagnosis (Griffiths et al, 2010; Cao et al, 2020; Karnovsky &

Li, 2020).

Targeted metabolomics has been used to screen and verify bio-

logical markers of immunity and infectious diseases (Neugebauer

et al, 2016; Kuhn et al, 2018; Cho et al, 2020; Lopez-Hernandez

et al, 2021). Ansone et al (2021) used targeted metabolome analysis

with LC–MS and found that tryptophan and arginine metabolism

may be involved in the immune response to severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Magdalena et al (2022) used

targeted metabolomics analysis to identify small metabolites as bio-

markers of childhood Mycobacterium tuberculosis infection. Ma

et al (2022) employed targeted metabolomics to validate the metab-

olites in patients with sepsis infection and understand the

function of host Cytochrome P450 Family 1 Subfamily A Member 1

(CYP1A1). Targeted metabolomics has also contributed to the study

of metabolic mechanisms (Babu et al, 2019; Zou et al, 2020; Haimerl

et al, 2021). Mar�ın-Corral et al (2021) used targeted metabolomics

to evaluate metabolic changes associated with disease severity in

COVID-19 and found the pathways related to ceramide, tryptophan,

and nicotinamide adenine dinucleotide (NAD) production, as well

as an exacerbated pro-inflammatory response, may be relevant to

disease severity. Peltenburg et al (2018) used targeted metabolomics

on plasma samples and identified significant immune-metabolic

changes in HIV-infected patients. In the study of Noto et al (2022),

targeted metabolomics revealed that altered bile acid metabolism

may contribute to Helicobacter pylori-induced inflammation-driven

gastric cancer.

Immunometabolism is a complex and dynamic process (Mathis

& Shoelson, 2011; O’Neill et al, 2016). Traditional metabolomics

methods are limited in their ability to track changes in specific meta-

bolic pathways, but stable isotope labeling metabolomics can over-

come this limitation. This technique involves labeling specific

compounds with stable isotopes (as discussed in Jang et al, 2018).

By analyzing the stable isotope labeling of downstream metabolites,

researchers can deduce the distribution of intracellular metabolic

pathways and, by analyzing organisms in different states, determine

the activity of specific metabolic pathways. Stable isotope labeling

metabolomics has been widely used in the research of metabolic-

related diseases such as cancer and immune-related diseases, pro-

viding a strong scientific foundation for understanding the patho-

genesis of these diseases and identifying potential drug targets

(Davidson et al, 2016; Faubert et al, 2017; Ma et al, 2019; Yuan

et al, 2019; Sheldon et al, 2021).

Untargeted metabolomics
The untargeted metabolomics approach involves the unbiased

detection of small molecule metabolites (including unknown chemi-

cals) using LC–MS, GC–MS, and NMR platforms (Schrimpe-Rutledge

et al, 2016). Differential metabolites are then analyzed using bioin-

formatics tools, and pathway analysis is performed to elucidate the

physiological mechanisms of the changes that have occurred. Untar-

geted metabolomics approaches involve the comprehensive analysis

of global metabolites and often provide more information than

A B

Figure 3. Mainstream metabolomics techniques in immunology.

(A) An overview of two different metabolomics approaches: untargeted and targeted metabolomics. The untargeted metabolomics aims to study a wide range of known
and unknown metabolites, whereas targeted metabolomics focuses on identifying specific known metabolites. (B) Data preprocessing Workflow. For NMR data, common
preprocessing steps include peak detection, phase correction, baseline correction, peak alignment, and bucketing. For MS data, the general preprocessing workflow
encompasses peak detection, deconvolution, peak grouping, peak alignment, and gap filling.

4 of 18 EMBO reports 24: e55747 | 2023 � 2023 The Authors

EMBO reports Jianbo Fu et al

 14693178, 2023, 4, D
ow

nloaded from
 https://w

w
w

.em
bopress.org/doi/10.15252/em

br.202255747 by Z
hejiang U

niversity, W
iley O

nline L
ibrary on [25/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



targeted metabolomics, enabling the discovery of new biomarkers

or the identification of differential metabolites (Sevin et al, 2015).

This approach is currently widely used in the discovery of bio-

markers, disease diagnosis, and mechanism research, and it pro-

vides new insights into the complex study of disease mechanisms

(Haimerl et al, 2021; Krishnan et al, 2021; Roberts et al, 2021;

Choueiry et al, 2022).

Untargeted metabolomics can reveal important biological associ-

ations in immunology research and identify novel metabolites/bio-

markers specific to a disease (Ding et al, 2021b; Alboniga

et al, 2022; Aximujiang et al, 2022; Chen et al, 2022; Tian et al,

2022). For example, Zhu et al (2022) used high-resolution untar-

geted metabolomics analysis to study influenza A virus subtype

H1N1 (H1N1) infected patients and found an association between

abnormal arginine metabolism produced by the virus and the immu-

nity of the respiratory mucosa. She et al (2022) used untargeted

metabolomics analysis to discover metabolic hub genes that may be

biomarkers for precise therapy in sepsis patients. In their research,

Ding et al (2021b) used untargeted metabolomics analysis to iden-

tify glycerophospholipid (GPL) metabolism and glutamine and glu-

tamate metabolism as potential key targets in HIV infection.

Both metabolomics approaches have their advantages and disad-

vantages. Untargeted metabolomics provides a comprehensive and

systematic response to the metabolome, while targeted metabolo-

mics is more focused on the quantitation of specific metabolites. In

practical applications, both approaches are often used in combina-

tion to complement each other (Asim et al, 2020; Thomas

et al, 2020; Jia et al, 2022; Mikaeloff et al, 2022; Yelamanchi

et al, 2022). For example, in the study of Xiao et al (2021), the com-

bination of untargeted and targeted metabolomics revealed that dis-

turbed metabolic pathways associated with hyperinflammation in

severe COVID-19 could be targeted with metabolic interventions as

a possible approach to inhibit SARS-CoV-2-induced cytokine release

syndrome. Tarancon-Diez et al (2019) used both targeted and untar-

geted approaches to show that the specific metabolomic profile

could be a potential biomarker and therapeutic target in HIV infec-

tion. Vrieling et al (2020) combined targeted NMR and untargeted

LC–MS metabolomics to explore the effect of Mycobacterium tuber-

culosis infection on primary human macrophage metabolism.

Sample preparation

The extraction of metabolites and sample preparation in metabolo-

mics research can affect the analyzed metabolic characteristics and

the biological interpretation of the metabolomic data (Tulipani

et al, 2013; Naz et al, 2014). Metabolites have a rapid turnover rate,

and changes in the sample collection period (such as day and night),

as well as in temperature, light, and mechanical pressure (such as

centrifugation and vortex) after collection, can impact the stability

of metabolites (Zhang et al, 2013; Lu et al, 2017). Different solvents

and different extraction protocols can produce different results for

metabolite identification (Le Belle et al, 2002; Wu et al, 2008; Chen

et al, 2013). Ideally, the metabolomic analysis should aim to extract

as many metabolite classes as possible, using both polar (such as

methanol or ethanol) and nonpolar (such as ethyl acetate, hexane,

and chloroform) solvents. However, no single extraction method

can extract all metabolites equally well (Hyotylainen, 2009; Naz

et al, 2014). Naz et al (2014) reviewed many different previously

developed sample preparation protocols and metabolomic measure-

ments of tissue samples in detail.

Reverse phase (RP) and hydrophilic interaction chromatography

(HILIC) are the most commonly used chromatographic methods for

LC–MS-based metabolomics (Le et al, 2020). HILIC has several

advantages over RP for analyzing polar compounds, including

higher retention of polar metabolites and enhanced mass spectrum

sensitivity (Buszewski & Noga, 2012). The human metabolome

includes lipids, carbohydrates, and metabolic intermediates (such as

organic acids, amino acids, and acylcarnitines; Wishart, 2019). RP

coupled with mass spectrometry has been used to identify a wide

range of nonpolar compounds, but it is not as effective at analyzing

carbohydrates, organic acids, amino acids, and nucleotides. These

compounds can be well preserved and separated using HILIC. Since

RP or HILIC-based methods may miss some key metabolites (Wikoff

et al, 2007; Miller et al, 2015; Coene et al, 2018), the results of these

two methods are often combined using full scan MS to capture and

detect all compounds (Want et al, 2010; Granafei et al, 2016; Gao

et al, 2018). Jang et al (2018) summarized in detail the different iso-

tope tracers and their utility for sample preparation in stable isotope

labeling metabolomics.

Data preprocessing and processing methods applied on
metabolomics data

Both targeted and untargeted metabolomics rely on analytical plat-

forms such as MS and NMR, and these technologies have played a

significant role in immunological research. However, these metabo-

lomic analyses often face challenges such as signal drift, experimen-

tal technical errors, missing values, and biological variability, which

can be very challenging for researchers to address (Han et al, 2017;

Wanichthanarak et al, 2019; Andres et al, 2020). Currently, a variety

of powerful tools and computational algorithms have been devel-

oped for data processing, which can help to reduce these challenges

and are widely used in immunology research. Understanding these

tools can help researchers select the most appropriate tools, make

better use of them, and apply them in scientific research.

Spectral data preprocessing
Different analytical platforms are used for separating and detecting

metabolite analytes, which produces complex raw spectral data. To

prepare this data for annotation and statistical analysis (as shown in

Fig 3B), computational tools are needed for spectral data preproces-

sing. Spectral data are primarily generated by two analytical plat-

forms: NMR and MS. The preprocessing of spectral data for these

two platforms is different. The conversion of spectral data, gener-

ated by various analytical platforms developed by different vendors,

to open-source format files can be accomplished using tools such

as nmrML Converter (http://nmrml.org/) for NMR data (Schober

et al, 2018). The nmrML Converter supports formats from Bruker,

JEOL, and Agilent/Varian and can capture raw NMR data, the spec-

tral data acquisition parameter, and metadata, and offers easy-to-

use web-based tools (Schober et al, 2018). For MS data, common

conversion tools include Proteowizard (Chambers et al, 2012),

MassLynx (Wang et al, 2012), and CompassXport (Kasalica et al,

2021). Proteowizard converts original MS data into mzXML format,
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which allows for the distribution of vendor-supplied libraries from

AB SCIEX, Agilent, Bruker, Thermo Fisher Scientific, and Waters

(Chambers et al, 2012). MassLynx can convert Waters raw files to

mzXML format (Wang et al, 2012). CompassXport converts raw files

from Bruker and some Agilent to the universal mzXML format

(Kasalica et al, 2021).

After converting spectra data, different procedures will be used

to preprocess NMR and MS data. For NMR data, common preproces-

sing steps include peak detection, phase correction, baseline correc-

tion, peak alignment, and bucketing. Tools commonly used for

NMR data include NMRProcFlow (Jacob et al, 2017), BATMAN

(Hao et al, 2014), and MNova (Claridge, 2009). NMRProcFlow

covers all spectral processing steps, including baseline correction,

chemical shift calibration, and alignment. (Jacob et al, 2017). BAT-

MAN deconvolves and quantifies metabolites in complex mixtures

using a Bayesian model of 1D NMR spectra (Hao et al, 2014), and

Mnova, which is primarily aimed at 1D/2D spectra of small/

medium-sized molecules, includes all spectra preprocessing steps

such as phase correction, baseline correction, peak alignment, and

bucketing (Claridge, 2009). For MS data, the general preprocessing

workflow consists of the following steps such as peak detection,

deconvolution, peak grouping, peak alignment, and gap filling.

There are several tools that are widely used for MS data prepro-

cessing, including XCMS (Smith et al, 2006), Progenesis (Zhang

et al, 2016), OpenMS (Rost et al, 2016), MAVEN (Clasquin

et al, 2012), and MZmine (Pluskal et al, 2010). To preprocess MS

data for metabolite profiling, XCMS employs nonlinear retention

time alignment, matched filtration, peak detection, and peak

matching (Smith et al, 2006). Progenesis is used for mass spectrom-

etry data preprocessing, including baseline correction, smoothing,

deconvolution, and peak alignment (Zhang et al, 2016). In OpenMS

software, the preprocessing steps include isotope deconvolution,

chromatographic peak picking, retention time alignment (RT), and

feature linking across multiple runs (Rost et al, 2016). MAVEN is an

interactive MS data processing tool that automatically discovers and

investigates peak intensities for isotope-labeled metabolites (Clas-

quin et al, 2012). MZmine has been employed in both targeted and

untargeted metabolomic analyses, including noise reduction

through chromatographic filtering, raw data range cropping, and

scan removal based on width (Pluskal et al, 2010). Thermo Scien-

tific TraceFinder software is popular for Thermo instruments, offer-

ing comprehensive qualitative workflows for LC and GC–MS data

that include smart calibration curves, library search capability, auto-

matic retention time and ion ratio adjustment, and extensive flag-

ging options.

Data processing
The peak intensity table will be generated after preprocessing the

raw spectra data, which includes procedures such as peak identifica-

tion, peak alignment, calibration, and others. There are many chal-

lenges in this process, including missing data, uninformative

features, data skewness, and systematic bias due to instrumentation

or sampling issues. Therefore, data processing is necessary to

improve the quality of the data (Craig et al, 2006; Zelena et al, 2009;

Dunn et al, 2011). In general, data processing involves five key

steps: (i) data filtering, which removes uninformative or low-quality

features from metabolomic data; (ii), missing value imputation,

which calculates and replaces missing values to ensure data

integrity and enable statistical analysis; (iii) quality controls correc-

tion (QCS), which corrects signal drifts and batch variations to

ensure data quality and stability; (iv), data transformation, which

reduces heteroscedasticity and corrects skewed distribution, making

the data distribution symmetrical, and satisfying the assumptions of

normalization methods; and (v) normalization, which reduces

unwanted systematic bias and makes data comparable among sam-

ples or metabolites, improving the reliability of the statistical

analysis.

At present, there are several tools available for processing meta-

bolomic data. Some of these tools cover the entire metabolomics

workflows, including the data processing step, such as IP4M (Liang

et al, 2020), KIMBLE (Verhoeven et al, 2018), MetaboAnalyst (Xia &

Wishart, 2011), MetaDB (Franceschi et al, 2014), Metandem (Hao

et al, 2019), MetFlow (Shen & Zhu, 2019), Workflow4Metabolomics

(Giacomoni et al, 2015), WebSpecmine (Cardoso et al, 2019), and

XCMS (Forsberg et al, 2018). These tools have also been used in

immunology research. For example, Zhang et al (2021) employed

MetaboAnalyst to process metabolomics data and revealed that met-

abolic reprogramming affects an anti-inflammatory phenotype with

trained immunity. Montenegro-Burke et al (2021) used XCMS in the

data processing step and found distinct anti-inflammatory metabo-

lites from T cell-induced colitis. Moreau et al (2020) applied Work-

flow4Metabolomics tools in the data processing and uncovered

inflammation-related mitochondrial dysfunction as a potential

mechanism underlying liver failure. Wei et al (2019) used

Metandem to process metabolomics data and identified metabolites

biomarkers as well as inflammation-related biological processes for

inflammation-induced Lower urinary tract symptoms. Knoll

et al (2021a) used MetFlow in the data processing and elucidating

the antimycobacterial mechanism of action of ciprofloxacin. Some

tools are specialized in a specific procedure of data processing, such

as batchCorr (Brunius et al, 2016) and MetaboQC (Calderon-

Santiago et al, 2017). There are also several tools that provide not

only data processing but also performance evaluation of processing

workflows, including MetaboGroup S (Wang et al, 2018), metaX

(Wen et al, 2017), MSPrep (Hughes et al, 2014), NOREVA (Fu

et al, 2022), NormalizeMets (De Livera et al, 2018), NormalyzerDE

(Willforss et al, 2019), and pseudoQC (Wang & Yang, 2019). For

example, Hartvigsson et al (2021) performed untargeted metabolo-

mics and then used batchCorr tool to process the data, discovering

the relationships between maternal and infant metabolic profiling

with immune maturation and allergy development. Lee et al (2019)

applied the NOREVA to process metabolomics and found metabolic

biomarkers that could accurately predict adverse pregnancy out-

comes in patients with systemic lupus erythematosus. Zeng

et al (2017) performed metaX to process metabolomics data and

uncovered the function of glycerophospholipid metabolism in psori-

asis. In the study by Bowerman et al (2020), the NormalizeMets tool

was used to process untargeted metabolomics data, helping to iden-

tify changes in the metabolites in patients with pulmonary disease.

Statistical analysis and interpretation tools for
metabolomics in immunology research

Following the step of data processing, statistical analysis and data

interpretation will be applied to identify metabolic markers and
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assess the relationships between metabolite features and immuno-

logical or clinical phenotypes. This step mainly includes statistical

analysis, pathway, and network analysis. Many tools have been

developed to aid in statistical analysis for the discovery of metabolic

biomarkers and data interpretation. The following tools are com-

monly used to analyze metabolomics data and have a variety of sta-

tistical methods.

MetaboAnalyst can be used to analyze and interpret metabolo-

mics data in depth (Chong et al, 2018). It includes methods of uni-

variate analysis such as fold change analysis (FC), analysis of

variance (ANOVA), and Student’s t-tests. The advanced statistical

analysis approaches include significance analysis of metabolites

(SAM) and empirical Bayesian analysis of metabolites (EBAM). The

chemometrics analysis methods such as principal component analy-

sis (PCA), partial least squares discriminant analysis (PLS-DA),

orthogonal partial least squares discriminant analysis (orthoPLS-

DA), and sparse partial least squares discriminant analysis (sPLS-

DA) are also widely used (Rio et al, 2009; Miolo et al, 2016; He

et al, 2018). Clustering analysis approaches including hierarchical

clustering, K-means, and self-organizing map (SOM), as well as clas-

sification and feature selection such as random forest (RF) and sup-

port vector machine (SVM), are commonly applied to metabolomics

studies (Bartel et al, 2013; Li et al, 2016; Broughton-Neiswanger

et al, 2020). MetaboAnalyst also offers biological interpretation tools

such as pathway analysis, enrichment analysis, and network analy-

sis. It has been widely applied in immunological research, for exam-

ple, Silva et al (2019) used it to analyze plasma metabolites that

may distinguish HIV-TB patients with and without tuberculosis-

related immune reconstitution inflammatory syndrome (TB-IRIS).

The KIMBLE platform, which is built on open-source data mining

and workflow technology, can be used to analyze targeted and

untargeted NMR data (Verhoeven et al, 2018). It has implemented

PCA, hierarchical cluster analysis, and PLS-DA. The extensive node

library provided by KIMBLE enables users with no programming

experience to apply, modify, and expand workflow. At present,

KIMBLE has been utilized to identify the metabolic profile (Deelen

et al, 2019; Dekker et al, 2020) and to identify the key metabolic

pathway of infection (Kokova et al, 2020).

MeltDB was primarily created for storing, managing, analyzing,

and annotating MS-based metabolomics data (Neuweger et al,

2008). This tool has provided t-test, ANOVA, HCA (hierarchical

cluster analysis), PCA, independent component analysis (ICA), and

metabolite correlation analysis. In addition, MeltDB also includes

pathway analysis and enrichment analysis. In the context of immu-

nological studies, MeltDB aims to provide bioinformatics tools for

interpreting and analyzing pathway information to advance research

physiology and pathology (Martinez et al, 2013; Pathak & Dave,

2014; Ruwe et al, 2019).

PhenoMeNal is a tool that can process and analyze metabolomics

data in the cloud (Peters et al, 2019). It not only provides statistical

methods, including PLS-DA, RF, SVM, and PCA, but also performs

pathway analysis. PhenoMeNal offers a number of standardized,

automated, and publicly available analysis pipelines in the Galaxy,

Jupyter, Luigi, and Pachyderm user interfaces. Galaxy Workflow is

a platform for combining different methods and analyzing metabo-

lomic data. In addition to PhenoMeNal, the following Workflow4-

Metabolomics (W4M) also offers galaxy workflows. PhenoMeNal

has been used in the discovery of biomarkers and mechanisms

related to pathophysiological processes in immunology research

(Abbiss et al, 2019; Rinschen et al, 2019).

W4M is based on the galaxy environment, which provides user-

friendly functions for creating and running data analysis workflows

such as pretreatment, statistical analysis, and annotation (Guitton

et al, 2017). W4M has implemented several univariate test methods,

including the t-test, Wilcoxon test, ANOVA, Kruskal–Wallis test, and

Pearson or Spearman correlation test. It also provided multivariate

analysis methods, such as PLS and its orthogonal variant (OPLS).

The Galaxy module in W4M enables users to conduct both unsuper-

vised (PCA) and supervised (PLS, OPLS, PLS-DA, and OPLS-DA)

analyses. W4M has been applied to immunological research; for

example, Moyne et al (2021) used it to identify bacterial metabolic

profiles that are significantly associated with clinically relevant bac-

terial phenotypes and chronic infections in cystic fibrosis.

MetaX is a tool that provides an easy-to-use pipeline for analyz-

ing MS metabolomics data (Wen et al, 2017). It offers several statis-

tical methods, including univariate analysis methods (Wilcoxon test

and t-tests), multivariate analysis (PCA, PLS-DA, OPLS-DA, and

cluster analysis), biomarker analysis (RF and SVM), power analysis,

correlation network analysis, functional analysis, and pathway anal-

ysis. MetaX helps users identify metabolic markers and pathways

(Chen et al, 2018; Vasaikar et al, 2019) and is a crucial tool in the

field of systems immunology.

MetFlow is a server that offers a comprehensive pipeline for

processing data and discovering differential metabolites (Shen &

Zhu, 2019). It provided common univariate and multivariate ana-

lyses. Unsupervised PCA reports the metabolome-wide difference

between samples, whereas supervised PLS calculates variable influ-

ence on projection (VIP) values to evaluate individual metabolite

contributions. In the study by Knoll et al (2021b), MetFlow was

used to analyze metabolomics data and to elucidate the antimyco-

bacterial mechanism of action of the decoquinate derivative

RMB041 (Knoll et al, 2021b).

MMEASE is an online platform for metabolomic data meta-

analysis that uses metabolite annotation, marker selection, and

enrichment analysis (Yang et al, 2021). It offers several methods for

sample separation, including hierarchical clustering, K-means clus-

tering, PCA, and SOM. It also has several methods for identifying

markers, such as FC, PLS-DA, OPLS-DA, t-test, chi-squared test,

correlation-based method, entropy-based filters, linear model and

Bayes, relief, random-forest-recursive feature elimination (RF-RFE),

SAM, support vector machine-recursive feature elimination (SVM-

RFE), and Wilcoxon rank-sum test. MMEASE, which is an important

tool in immune research, provides users with metabolic markers

and metabolic pathway analysis (Galezowska et al, 2021).

WebSpecmine is a web server that analyzes metabolomics data

from various sources, including NMR, infrared, UV–visible, Raman,

and LC/GC–MS (Cardoso et al, 2019). It not only offers various

approaches but also allows for sharing of data and results. The

server implements univariate statistical analysis methods such as t-

tests, one-way ANOVA, Kruskal–Wallis, Kolmogorov–Smirnov, and

FC. In addition, it offers supervised machine learning models,

including linear discriminant analysis (LDA), PLS, SVM, neural net-

works (NN), and pathway analysis. WebSpecmine provides compre-

hensive metabolomic statistical analysis methods and may

constitute a contribution to the systems immunology (Amer &

Baidoo, 2021).
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IP4M is a platform for analyzing metabolomics data using MS

(Liang et al, 2020). It provides a range of procedures for processing

this data, as well as statistical analysis methods including unit-

variant methods (Wilcoxon, ANOVA, and Kruskal–Wallis test), and

multivariant methods (PCA, OPLS-DA, RF, SVM, Biosigner, and

Boruta). It also includes machine learning methods, correlation

analysis, cluster, and regression analysis, receiver operating charac-

teristic curve (ROC) analysis, pathway and enrichment analysis, and

the Generalized coRrelation analysis for Metabolome and Micro-

biome (GRaMM). IP4M could aid users in the discovery of new bio-

markers for metabolic disorders (Zheng et al, 2021) and would be a

useful tool in the field of systems immunology.

Integrative metabolomics in immunology research

Metabolomic analysis can identify different metabolic features and

dynamic changes in response to various phenotypes, diseases, and

environments (Olszewski et al, 2009; Gulati et al, 2015; Joice

Cordy, 2020). Metabolomics is used to study the relationship

between metabolism and changes in immunity (O’Neill et al, 2016;

Ayres, 2020; Troha & Ayres, 2020). For example, Qing et al (2020)

found that interleukin 6 could modulate glucose metabolism and

regulate immunometabolic reprogramming under conditions of

acute stress. Other studies have also shown a critical link between

metabolic regulation and cytokine release (Tannahill et al, 2013;

Bambouskova et al, 2018; Mills et al, 2018). Additionally, metabolic

pathways discovered through metabolomics have been found to

modulate host responses to different viral infections (Gulati et al,

2015; Chan et al, 2019; Song et al, 2020).

Due to the complexity and diversity of the immune system’s reg-

ulations, as well as the advancement of systems biology, a single

omics study is often insufficient to fully understand it (Eckhardt

et al, 2020). As shown in Fig 4A, metabolomics, the combination of

metabolomics with genomics, transcriptomics (single-cell), and

proteomics, allows for the exploration of biological mechanisms

from multiple perspectives. Systems immunology, which enables

the complementary validation of multiomics data, can reveal the

relationship between immunological molecular regulation and phe-

notypes, as well as identify important metabolic pathways, genes,

proteins, and metabolic markers for further experimental analysis

(Burel et al, 2016; Bakker et al, 2018; Koeken et al, 2021). A search

of PubMed using the keywords “immunity” and “metabolomics”

from 2003 to 2021 yielded over 4,300 peer-reviewed publications.

As shown in Fig 4B, it is clear that metabolomics has been widely

used in immunological research in recent years, with over 1,000

publications in the year 2021 alone. Additionally, it has been found

that metabolomics combined with other systems biology methods

has also been increasingly applied in immunological studies. The

highest number of publications combining metabolomics and geno-

mics in immunity was over 250 articles published in 2021.

In immunological studies, metabolites obtained through metabo-

lomics analysis are often associated with immune phenotypes. To

identify the relationship between these two factors, researchers first

map the immune phenotypes and all metabolites to each other.

Then, they use correlation coefficient methods, such as calculating

Pearson’s or Spearman’s rank correlation coefficient to determine

the correlation between each immune phenotype and each metabo-

lite (one-to-one) or select the significantly different/high abundance

metabolites for further. Finally, they use functional analysis, cluster

analysis, and network analysis to interpret the data. For example, in

previous studies, researchers calculated the association between

metabolites and immune phenotypes to identify several metabolites

that are significantly correlated, then continued to analyze the corre-

lation between these metabolites and genes, and finally uncovered

the causal roles of metabolites in disease (Bakker et al, 2018; Chu

et al, 2021). In another study, Xiao et al (2021) first analyzed the

correlations between cytokines and metabolites through linear

regression models, and further analysis revealed immunometabolic

reprogramming in COVID-19. In addition, Abdrabou et al (2021)

A B

Figure 4. Integrative metabolomics in immunology research.

(A) Schematic depiction of the metabolomics integration workflow. By combining metabolomics with genomics, transcriptomics (single-cell), and proteomics, biological
mechanisms can be explored from multiple perspectives. (B) Annual publications using the terms metabolomics, single-cell sequencing, genomics, transcriptomics, and
proteomics in PubMed from 2003 to 2021. The purple, blue, green, yellow, and dark green lines represent only metabolomics and the combination of metabolomics with
single-cell sequencing, genomics, transcriptomics, and proteomics, respectively.
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performed cross-correlation between the transcript abundance of all

genes expressed in the samples and infection-associated metabolites

to identify possible biological relationships. Furthermore, Nath

et al (2017) used weighted gene coexpression network analysis

(WGCNA) to find the co-expressed gene modules, then enriched by

gene ontology (GO) to obtain immunity-related genes, and finally

performed correlation analysis with metabolites. Lee et al (2022)

integrated plasma metabolomics data and transcriptional networks

within circulating immune cells identified through single-cell RNA-

seq analysis to uncover metabolic changes in COVID-19 patients. In

the study of Bakker et al (2018), machine learning approaches were

used to integrate multiomics data to predict immune functions.

On the contrary, a differential analysis of each omics is

performed in a single omics study. This includes statistical analysis

of metabolites or genes that are different between groups. Associa-

tion analysis and pathway analysis are conducted on these differen-

tial features. The advantage of this type of analysis is that it allows

for the detection of the same enzyme-encoding genes in both the

metabolome and transcriptome, which increases the reliability of

the features. Additionally, the different genes detected by each

omics complement each other between the two omics. Examples of

this include proteomics/transcriptomics and metabolomic studies

on COVID-19 (Shen et al, 2020; Bi et al, 2022; Li et al, 2022) and the

integration of metabolomics and microbiomics to identify critical

Table 1. Major computational tools available for multiomics data integration (sorted alphabetically by tools’ name).

Methods/
Tools URL Reference Brief descriptions

BioCyc https://biocyc.org/ Caspi et al (2016) MetaCyc is a database of metabolic pathways and enzymes (proteins/genes).

CoExp https://rytenlab.com/coexp Garcia-Ruiz
et al (2021)

CoExp is a web server for the exploitation of coexpression networks.

iOmicsPass https://github.com/cssblab/
iOmicsPASS

Koh et al (2019) iOmicsPASS is a tool for network-based multiomics data integration for predictive
subnetwork discovery.

MAINE http://maine.ibemag.pl/
#exemplaries

Gruca et al (2021) MAINE is a web server for multiomics feature selection and data exploration.

Mergeomics http://mergeomics.research.
idre.ucla.edu/

Ding et al (2021a) The Mergeomics web server is a flexible online tool for integrating multiomics data to
clarify disease networks and predict therapeutics.

MetExplore https://metexplore.toulouse.
inrae.fr/metexplore2/

Cottret et al (2018) MetExplore is a web server for metabolic network curation, network exploration, and
omics data analysis.

MetScape http://metscape.ncibi.org/ Gao et al (2010) MetScape is a tool for metabolites, genes, and pathways that integrates KEGG data.

MiBiOmics https://shiny-bird.univ-
nantes.fr/app/Mibiomics

Zoppi et al (2021) MiBiOmics is a web-based tool that implements classical ordination techniques and the
inference of omics-based (multilayer) networks.

mixKernel http://mixomics.org/
mixkernel/

Mariette and Villa-
Vialaneix (2018)

mixKernel is a tool that integrates multiple datasets of various types into a single
exploratory analysis.

mixOmics http://mixomics.org/ Rohart et al (2017) mixOmics is a tool for omics feature selection and multiple data integration.

MOFA https://github.com/bioFAM/
MOFA

Argelaguet
et al (2018)

MOFA is a tool for unsupervised integration of multiomics datasets.

MONGKIE http://yjjang.github.io/
mongkie/

Jang et al (2016) MONGKIE is an integrated tool for network analysis for multiomics data.

MoSBi https://github.com/tdrose/
mosbi

Rose et al (2022) MoSBi is a tool that could automate signature mining for molecular stratification and
subtyping.

MultiSLIDE https://github.com/soumitag/
multiSLIDE

Ghosh et al (2021) The multiSLIDE web server allows users to explore related elements of biological
pathways in multiomics data.

NeDRex https://api.nedrex.net/ Sadegh et al (2021) NeDRex is a platform for integrating and interacting with data from different sources,
including information on genes, drugs, therapeutic targets, diseases, and their
relationships.

OmicsNet https://www.omicsnet.ca/ Zhou et al (2022) OmicsNet a tool for multiomics integration and network visual analytics.

PaintOmics https://paintomics.org/ Liu et al (2022b) PaintOmics web server allows for the integrative study of multiomics datasets, which
are backed by numerous pathway databases.

pwOmics https://bioconductor.org/
packages/pwOmics/

Wachter and
Beissbarth (2015)

pwOmics is an R package for pathway-based integration of time-series omics data using
public database knowledge.

SUMMER https://bitbucket.org/salkigc/
summer

Huang et al (2020) SUMMER is a tool that has key metabolic reactions and relevant underlying biological
pathways.

WGCNA https://cran.r-project.org/
web/packages/WGCNA/index.
html

Langfelder and
Horvath (2008)

WGCNA is an R package for weighted correlation network analysis.
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features conduct association and functional analysis (Raijmakers

et al, 2020). Wozniak et al (2020) also used binary comparisons and

clustering and network-based approaches to identify disease associ-

ations within sample groups, providing a comprehensive view of

the early host response to Staphylococcus aureus bacteremia.

Computational tools for multiomics data integration
In recent years, advances in systems immunology technologies have

resulted in a large number of complex datasets. It is crucial to

extract biologically meaningful features from these datasets in order

to solve immunological problems or implement precision medicine.

Therefore, we reviewed the computational methods or tools com-

monly used to integrate metabolomics with other multiomics data

(as shown in Table 1). These methods/tools will enhance a compre-

hensive understanding of the metabolic processes and immunity of

disease.

Analytical methods that integrate metabolomics and other omics

can be divided into three strategies based on prior knowledge, net-

work methods/clustering, and data-based integration. The strategy

based on prior knowledge uses knowledge from databases or scien-

tific literature to establish connections on various omics data and

construct regulatory networks. These tools include the R package

pwOmics (Wachter & Beissbarth, 2015), the BioCyc database (Caspi

et al, 2016), the MetExplore web server (Cottret et al, 2018), and

software like MetScape (Gao et al, 2010) and MONGKIE (Jang

et al, 2016). Moreover, the strategy based on network methods/clus-

tering is used to study the association between co-expressed net-

work modules, and combined with prior knowledge, to further

explore the relationship between network modules and diseases.

These analytical tools for this strategy include the WGCNA R soft-

ware package (Langfelder & Horvath, 2008) and web servers like

iOmicsPass (Koh et al, 2019), OmicsNet (Zhou et al, 2022), MiBiO-

mics (Zoppi et al, 2021), PaintOmics (Liu et al, 2022b), NeDRex

(Sadegh et al, 2021), and CoExp (Garcia-Ruiz et al, 2021). The last

is the data-based integration strategy, which relies on the character-

istics of the data itself, and uses machine learning models or statisti-

cal models to find the relationship between the omics data. R

packages for this strategy include MOFA (Argelaguet et al, 2018),

mixOmics (Rohart et al, 2017), mixKernel (Mariette & Villa-

Vialaneix, 2018), and MoSBi (Rose et al, 2022). Web servers for this

strategy include MAINE (Gruca et al, 2021), MultiSLIDE (Ghosh

et al, 2021), Mergeomics (Ding et al, 2021a), and SUMMER (Huang

et al, 2020).

New developments and discussion

The metabolic pathways in immune cells are closely related to spe-

cific immune functions and cellular states in health or disease (Buck

et al, 2017; Geltink et al, 2018). Traditional methods for detecting a

large number of cells may not accurately reflect the situation of a

single cell due to the heterogeneity of cells and rapid turnover of

metabolites. Therefore, it is increasingly necessary to detect metab-

olites in a single cell (Evers et al, 2019). Single-cell metabolomics

can directly obtain the metabolite information of a single cell and

provide insight into the relationship between the physiological pro-

cess of a single cell and its chemical composition (Kumar

et al, 2020; Shrestha, 2020). In recent years, mass spectrometry

imaging (MSI) and spatial resolution MS analysis have made signifi-

cant progress in achieving spatial metabolomics at the single-cell

scale (Petras et al, 2017; Alexandrov, 2020). Hartmann and

Bendall (2020) used their established MIBI-TOF platform to com-

bine single-cell metabolic profiling, immune cell phenotype, func-

tional status, cell–cell interactions, and location within tissues.

Wang et al (2022) developed an advanced spatially high-resolution

metabolomics approach capable of achieving single-cell-level reso-

lution in situ to interpret cell-type-specific metabolic dynamics in

the context of the structure and metabolism of neighboring cells.

Rappez et al (2021) developed an open-source method for in situ

single-cell metabolomics using matrix-assisted laser desorption/ion-

ization (MALDI) imaging mass spectrometry, combined with fluo-

rescent signals and morphospatial features, to perform high-

throughput, in situ metabolome analysis at the single-cell level.

In addition, Artyomov and Van den Bossche (2020) provide a

detailed review of single-cell application techniques and their gen-

eral principles for studying immune metabolism, outline the meta-

bolic heterogeneity of immune cells, and discuss limitations of

current immune techniques and future directions for exploration.

The rapidly growing field of single-cell metabolomics will help to

understand the metabolic pathways of immune cells and the mech-

anisms that lead to immune dysfunction and disease development

when metabolism is abnormal.

The metabolic changes that occur in immune cells are dynamic

(Loftus & Finlay, 2016). A theoretical model explaining the dynamics

of this process will allow us to understand the consequences of

changes in the levels of enzymes, metabolites, or regulators in this

key cellular process. However, creating such a model is challenging

due to the thousands of metabolic reactions that occur within cells

(Medina, 2020). Purohit et al (2022) provide a thorough overview

of current metabolic modeling methods used to study cellular

Box 1. In need of answers

i Can metabolomics research and our current understanding of
metabolic processes in immune regulation provide potential
therapeutic targets or interventional strategies for the treat-
ment of infectious diseases?

ii A variety of novel statistical analysis algorithms and methods
for metabolomics data processing are now available, but differ-
ent methods would produce different results. Therefore, how
should we choose the most appropriate methods to obtain
robust and accurate results?

iii Systems immunology can reveal the relationship between
immunological molecular regulation and phenotype from multi-
level omics data. However, integrating multiomics data can be
computationally intensive and challenging. Is it possible to
develop a convenient and reliable integration pipeline to assist
researchers in analyzing multiomics data?

iv Single-cell metabolomics and spatial metabolomics are impor-
tant in immunology research, but the analysis process can be
complex. Can we develop a convenient analytical tool for
single-cell metabolomics to promote the wider use of this
technology?

v The metabolic changes that occur in immune cells are dynamic,
but this process is currently not explained by any theoretical
mathematical model. Could Such a model help us to under-
stand the dynamic changes of genes, enzymes, and metabolites
in this process and enhance our understanding of immune cell
metabolism?
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metabolism, summarize the applications and limitations of meta-

bolic models for studying immune metabolism, and introduce math-

ematical modeling tools that are expected to advance the field.

Recent technological advances, such as imaging techniques and

multiomics, have provided unprecedented detail on the functioning

of the immune system. However, techniques for broader coverage

(more metabolites) and improved quantification are still needed in

metabolomics. Additionally, due to the complexity of the immune

system and the large experimental datasets, it is a great challenge to

develop methods to efficiently and quickly estimate parameters in

large-scale mathematical models. Further progress in metabolomics

and theoretical science will help to advance our understanding of

complex immune metabolism (see also Box 1). Effective integration

of metabolomics with systems immunology can help to better under-

stand the immune system and may contribute to personalized

medicine.
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