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ABSTRACT

Drug discovery relies on the knowledge of not only
drugs and targets, but also the comparative agents
and targets. These include poor binders and non-
binders for developing discovery tools, prodrugs for
improved therapeutics, co-targets of therapeutic tar-
gets for multi-target strategies and off-target inves-
tigations, and the collective structure-activity and
drug-likeness landscapes of enhanced drug feature.
However, such valuable data are inadequately cov-
ered by the available databases. In this study, a ma-
jor update of the Therapeutic Target Database, pre-
viously featured in NAR, was therefore introduced.
This update includes (a) 34 861 poor binders and 12
683 non-binders of 1308 targets; (b) 534 prodrug-
drug pairs for 121 targets; (c) 1127 co-targets of
672 targets regulated by 642 approved and 624 clin-
ical trial drugs; (d) the collective structure-activity
landscapes of 427 262 active agents of 1565 tar-
gets; (e) the profiles of drug-like properties of 33
598 agents of 1102 targets. Moreover, a variety of
additional data and function are provided, which in-
clude the cross-links to the target structure in PDB
and AlphaFold, 159 and 1658 newly emerged targets
and drugs, and the advanced search function for

multi-entry target sequences or drug structures. The
database is accessible without login requirement at:
https://idrblab.org/ttd/.

GRAPHICAL ABSTRACT

INTRODUCTION

Drug discovery is promoted by not only the knowl-
edge of drugs (1) and their therapeutic targets (2–4), but
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also the comparative data with respect to other bioac-
tive agents and other targets. Such comparative data in-
clude the knowledge of poor binders or non-binders of
individual target that are useful for developing drug dis-
covery tool of enhanced performance (5–7); the informa-
tion of prodrugs that facilitates drug design by improv-
ing pharmacokinetic/pharmacodynamic features (8); the
co-targets of therapeutic targets that facilitate the investi-
gations of multi-target strategies (9), off-target (10,11) &
undesired effect (9); the collective structure-activity land-
scapes of drugs against individual target that reveal impor-
tant pharmaceutical features such as activity cliffs (12); and
the drugs’ profiles of their drug-like properties that provide
drug-likeness landscapes of the explored bioactive chemi-
cal space for therapeutic targets (13). Particularly, there is
a rapid trend of the discovery of Artificial Intelligence (AI)
tools for the drug discovery (14,15), including the AI tools
for identifying bioactive compounds, and the construction
of such tools requires data of poor binders and non-binders
of a specific target (16). In the meantime, the existing pro-
drug data may inspire new ideas to avoid the drug devel-
opment challenges that limit formulation option or result
in undesired biopharmaceutical/pharmacokinetic perfor-
mance (8). Thus, such comparative data above are urgently
needed by researchers in drug discovery community. More-
over, the data of target’s 3D structure are the key informa-
tion for drug discovery (5). Apart from the increasing num-
ber of experimentally-resolved target crystal structures (17),
advanced AI technologies (e.g. AlphaFold) have enabled the
prediction of target’s crystal structures of high-confidence
(18,19), which requires the target-related databases, espe-
cially TTD, to include such valuable data.

While the established databases provide the comprehen-
sive information of both drugs and targets (20–24), there is
an inadequate coverage of the comparative data for the tar-
geted agents and high-confidence 3D structures of human
targets. To provide such valuable data, several major up-
dates of Therapeutic Target Database (https://idrblab.org/
ttd/) were thus introduced in this study. The first was the in-
clusion of > 34,800 poor binders (the target activity within
the range of 50–200 �M) and >12 600 non-binders (target
activity > 200 �M) for 383 and 309 successful targets (STs),
392 and 275 clinical trial targets (CTs), 137 and 91 preclini-
cal or patented targets (PTs), and 331 and 195 research tar-
gets (RTs) respectively. Second, we added >500 prodrug-
drug pairs for 91 STs, 30 CTs. Third, we provided >1100
co-targets of 423 STs and 249 CTs. These STs and CTs are
targeted by 642 approved, and 624 clinical trial drugs, re-
spectively. Fourth, we provided the 2D collective structure-
activity landscapes (containing > 427 200 bioactive agents)
for 444 STs, 469 CTs, 163 PTs and 489 RTs. Fifth, the drugs’
profiles of drug-like property of >33 500 agents of 435 STs,
356 CTs, 125 PTs and 186 RTs were also shown. Mean-
while, additional structural data were updated, which in-
cluded the cross-links to 930 experimentally-resolved PDB
structures and 1824 AlphaFold-generated structures; and
159 and 1658 newly emerged targets and drugs were also
collected. Table 1 gave the statistics of targets and drugs
among different database versions, and Table 2 summarized
the new features and their corresponding statistics updated
to the latest database. Moreover, the schema, search engine,

and adopted ontology of this database were also provided
in the TTD website.

POOR BINDERS AND NON-BINDERS OF THERAPEU-
TIC TARGETS

Molecular docking is a widely-used structure-based drug
discovery method (17), which employs scoring functions
for scoring the binding of molecules to a target site (25).
Poor binders and non-binders are useful decoy molecules
for the development of the scoring functions (6). AI meth-
ods have also been extensively explored to develop bioac-
tive molecule and pharmaceutical property screening tools,
which have been primarily trained by actives (e.g. binders)
and non-actives (e.g. poor binders, non-binders) (26–28).
Particularly, the molecules of <10 �M activity were typ-
ically considered as inhibitors or actives (29), while those
of 50–200 �M activity were reported as poor inhibitors
(30,31). Meanwhile, the molecules of >200 �M activity
were regarded to be inactive/of little effect (32,33). In other
words, it is essential to have a conveniently-accessible re-
source for poor binders and non-binders of the therapeu-
tic targets. Thus, the molecules with experimentally mea-
sured activities against each TTD target were first collected
by reviewing PubMed literatures (34) using keyword com-
binations between target names/synonyms and ‘inhibitor’,
‘antagonist’, ‘agonist’, ‘activity’, ‘binding’, ‘affinity’, ‘IC50’,
‘Ki’, etc. Second, these PubMed literatures were manually
checked to discover those containing the molecule with ex-
perimentally measured quantitative activity against any tar-
get of interest. Third, based on these collected activity val-
ues, the poor binders and non-binders were tentatively de-
fined as of 50–200 �M (30,31) and >200 �M (32,33) activ-
ity, respectively. Using the above criteria, a total of 34 861
poor binders and 12 683 non-binders were collected for 393
and 309 STs, 392 and 275 CTs, 137 and 91 PTs, 331 and 195
RTs, respectively.

PRODRUGS

Good therapeutic drugs possess not only potent activities
but also desirable pharmacokinetic and toxicological prop-
erties (35). In some cases, the drug leads may possess potent
activity but poor pharmacokinetic property, which could
be overcome using the prodrug strategy (8). Prodrugs are
molecules modified from the parent drugs, with little or no
activity but the good pharmacokinetic property, which are
converted into active parent drugs inside human body via
enzymatic or other process (8). Such strategy helps over-
come drug discovery challenges that limit pharmacokinetic
performances and drug formulation option. For instance,
the prodrugs Ivemend and Gilenya were reported to improve
solubility and enhance permeation, respectively (5). There-
fore, a number of prodrugs were first collected by review-
ing PubMed literatures (34) using various keywords such
as ‘prodrug’, ‘pro-drug’, etc. Second, these literatures were
manually checked to discover those containing the informa-
tion of prodrug and its parent drug. Third, detailed data
of a prodrug were retrieved from the literatures, which in-
cluded disease indication, clinical status, prodrug strategy,
improved property, bioconversion mechanism, etc. Fourth,
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Table 1. Accumulation of drugs and their corresponding targets in the latest and previous versions of TTD database

TTD statistics for targets and drugs

2022 2020 2018 2016 2014 2012 2010
All targets 3578 3419 3101 2589 2360 2025 1894

Successful targets 498 461 445 397 388 364 348
Clinical trial targets 1342 1191 1121 723 461 286 292
Preclinical/patented targets 185 155 0 0 0 0 0
Research targets 1553 1612 1535 1469 1467 1331 1254

All drugs 38 760 37 102 34 019 31 614 20 667 17 816 5028
Approved drugs 2797 2649 2544 2071 2003 1540 1514
Clinical trial drugs 10 831 9465 8103 7291 3147 1423 1212
Preclinical/patented drugs 5009 4845 0 0 0 0 0
Experimental drugs 20 123 20 143 18 923 17 803 14 856 14 853 2302

Table 2. New features and their corresponding statistics added to the 2022 TTD. These new features included structure-based activity landscape of targets,
profile of drug-like properties of studied targets, prodrugs together with their parent drug and target, co-targets modulated by approved or clinical trial
drugs, and the poor binders and non-binders of targets

� Structure-based activity landscape of studied targets

No. of targets with chemical structure based activity landscape No. of drug structures
Successful Clinical trial Preclinical/patented Research
444 469 163 489 427 262

� Drug-like properties of studied targets

No. of targets with drug property profile No. of drugs
Successful Clinical trial Preclinical/patented Research
435 356 125 186 33 598

� Prodrugs together with their parent drug and target

No. of prodrugs Approved Clinical trial Preclinical/patented Experimental
146 79 9 300

No. of targets for prodrugs Successful Clinical trial Preclinical/patented Research
91 30 1 1

� Co-targets modulated by approved/clinical trial drugs

No. of targets with co-targets No. of drugs modulating co-targets No. of co-targets
Successful Clinical trial Approved Clinical trial
423 249 642 624 1127

� Poor binders and non-binders of studied targets

No. of targets with poor binder(s) No. of poor binders interacting
with TTD targets

Successful Clinical trial Preclinical/patented Research
383 392 137 331 34 861

No. of targets with non-binder(s) No. of non-binders interacting with
TTD targets

Successful Clinical trial Preclinical/patented Research
309 275 91 195 12 683

the structures of the prodrug and its parent drug were drawn
using ChemDraw based on the structures reported in each
corresponding literature. As shown in Figure 1, both the
detailed data and structures of prodrugs were explicitly de-
scribed in the TTD prodrug page. All in all, a total of 534
prodrug-drug pairs of 91 STs and 30 CTs were collected to
this update of TTD.

CO-TARGETS OF THERAPEUTIC TARGETS

Many drugs are known to interact with more macromolec-
ular targets than their intended primary therapeutic target.
In particular, a multi-target drug produces its therapeutic
effect by modulating multiple targets (9). Some clinical trial
drugs have been found to produce their therapeutic effects
via interacting with off-targets, i.e., a macromolecular target

other than their originally intended primary target (10). On
the one hand, such beneficial effects of off-target have been
explored for drug repurposing against complex diseases
(36–39); on the other hand, off-target activity may in some
instances lead to undesirable effect (40). Based on multiple
targets of drugs, one can define the co-targets of a thera-
peutic target as the additional targets of all drugs target-
ing the therapeutic target. In other words, these co-targets
represent both the targets co-modulated by a multi-target
drug (5) and the off-target of a drug (11). Thus, those co-
targets of a therapeutic target were first collected by review-
ing PubMed literatures (34) by combining the target name
with the keywords ‘multi-target’, ‘off-target’, ‘multiple tar-
gets’, ‘poly-pharmacology’, ‘co-targets’, ‘co-targeting’, etc.
Second, all these literatures were manually checked to dis-
cover those having the information of co-targets, and the
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Figure 1. A typical page in TTD providing prodrug information. The structures of both prodrug and its parent drug are provided along with the biocon-
version enzyme or condition. Structural variation between prodrug and parent drug is highlighted in orange. The strategy for prodrug design, and the
enhancement in the pharmaceutical property from parent drug to its prodrug are also described.

drugs of clinical importance (approved or clinical trials)
that co-regulating a therapeutic target and its co-targets
were also identified from literatures, company reports, and
other official resources providing drug-target information.
Third, detailed data of each co-target were collected to TTD
and cross-linked to other reputable databases (e.g. UniProt
(41) and NCBI Gene (34)). As a result, 1127 co-targets of
423 STs and 249 CTs co-modulated by 642 approved and
624 clinical trial drugs were identified and collected for this
update.

COLLECTIVE STRUCTURE-ACTIVITY LANDSCAPES
OF INDIVIDUAL TARGET

In the design of drugs against individual target, the molecu-
lar structure of the hit against a target (first molecule found
to bind to the target) should be modified to optimize target
binding activity (42,43). Those modified molecules, partic-
ularly the structural derivatives of a hit, largely follow cer-
tain structure-activity relationship (44), and can also lead
to the dramatical activity variations, namely activity cliff
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(12,45,46). Such structure-activity relationships can be fur-
ther evaluated by the collective structure-activity landscape
of all known binders of studied target. As described in Fig-
ure 2, all known binders of a target were clustered based
on their structural similarities, each binder was represented
by a colored bar with its height proportional to the level of
target binding activity (–log IC50, –log Ki, etc.) and color
indicating each binder’s clinical status (orange, yellow, blue
and grey denote approved, clinical, discontinued and inves-
tigative drugs, respectively). The clustering of all binders
of target was constructed using the sequential steps as fol-
lows. First, the molecular fingerprints of all binders were
computed using R package ChemmineR (47). Second, the
Tanimoto coefficient-based similarities among binders were
computed by ChemmineR (47). Third, the complete linkage
hierarchical clustering based on Euclidean distance (48) was
adopted to cluster all target binders. Finally, a 2D graph was
generated using the Data-Driven Documents (49), which was
displayed on TTD webpage. In this update, the chemical
structure-based activity landscapes of 444 STs, 469 CTs, 163
PTs and 489 RTs were provided. Figure 2 presents the 2D
graph of such landscape for carbonic anhydrase VI (TTD
Target ID: T06569).

Such collective structure-activity landscape of individual
target is, to the best of our knowledge, unique in the fol-
lowing aspects. First, each landscape in TTD is dedicated
to all drugs and other binders of individual therapeutic tar-
get. Such target-specific landscape provides the overview of
the structural similarity among all target-specific binders,
which could help the readers to gain a quick understanding
of all available binding scaffolds of a studied target. Sec-
ond, such landscape gives the activities of all drugs and
binders for a target along with their structural character-
istics, which is useful for describing QSARs and activity
cliffs. Third, this provided landscape includes the valuable
information of each drug’s clinical status, which demon-
strated a unique perspective illustrating the relationships
between drug structures and clinical development stages.
Therefore, such collective structure-activity landscape of in-
dividual therapeutic target provided in TTD was of great
merit for modern drug discovery.

COLLECTIVE PROFILES OF DRUG-LIKE PROPER-
TIES OF INDIVIDUAL TARGET

The potential of a bioactive molecule to become a drug is
partly judged by the evaluation of its drug-like properties
(13,50). The drug-likeness rules such as the Lipinski’s rule
of five have been developed and widely used for evaluating
the drug development potential of bioactive molecules (50–
53). Such rules exploit drug’s distinguished physicochemi-
cal property, including molecular weight and the number of
hydrogen bond donors, as the basis for drug-likeness evalu-
ations (54). The value of these drug-like properties may vary
from the drugs of one target to those of another. There-
fore, target-specific profiles of drug-like property may be
useful for facilitating the analysis of the landscape of drug-
like property for targeted therapeutics (55). As illustrated
in Figure 3, the 2D profiles of the target-specific drug-like
properties for those targets in TTD were provided. Particu-
larly, all known drugs of a target were clustered based on
multiple (the top plot in Figure 3) or single (six plots at

the bottom of Figure 3) drug-like properties, which was dis-
played using the hierarchical clustering map, heatmap and
bar plot. The bar color indicates the highest clinical status
of the corresponding drugs (approved, clinical trial, etc.).
Users can move the mouse over the bar to find the basic
information (status, PubChem CID, property, etc.) of spe-
cific drugs, and the detailed information of each drug can
be also found by clicking that drug. Within each graph, the
known drugs of a target were clustered according to their
similarities in drug-like properties, which was constructed
by a process similar to that described in previous section.
Each drug was represented by a vertical line with the am-
plitude proportional to the values of drug-like property. All
in all, the profiles of 6 drug-like properties (such as molec-
ular weight, octanol/water partition coefficient, hydrogen
bond donor count, hydrogen bond acceptor count, rotat-
able bond count & topological polar surface area) for 435
STs, 356 CTs, 125 PTs and 186 RTs were shown. Figure 3
presents the 2D profile of drug-like property for HIV inte-
grase (TTD Target ID: T39087).

ENRICHED STRUCTURAL DATA AND ADVANCED
SEARCH FUNCTION

The structures of macromolecules are important for drug
discovery (56) and protein engineering or design (57). With
the availability of target’s 3D structures, one can employ
the structure-based drug discovery methods (such as molec-
ular docking (56,58), 3D QSAR (59,60), structure-based
pharmacophore (61) and molecular dynamics simulation
(62)) to identify the binders of specific target (63). The
number of experimental 3D structural entries of macro-
molecules have increased to >180 000 (17). These nonethe-
less only represent a minority of known protein sequences,
with 35% proteins in human proteome having structure(s)
in Protein Data Bank (18). Recent progress of AI technique
like AlphaFold have enabled high-confidence prediction of
protein 3D structures for most human proteins (18). Al-
phaFold employs a deep learning architecture to predict the
3D structure of a protein from its sequence (18). Thus, the
AlphaFold-generated 3D structures could greatly expand
the range of targets covered by structure-based drug discov-
ery methods (64). To have a convenient access of the struc-
tures for each TTD target, the crosslinks to PDB (providing
experimentally-resolved crystal structure) and AlphaFold
(describing the predicted 3D structure) were reviewed and
provided in TTD, which helped to link 2754 targets to their
structure data.

Sequence similarity searching is the search of proteins
with similar sequences to a known target, which is useful for
identifying potential targets (65) and tracing protein evo-
lution (66). It is based on the hypothesis that proteins of
similar sequences have similar functions (67). Drug simi-
larity searching is the search of small molecules with sim-
ilar structures as that of a known drug, which is useful for
finding molecules with similar activities or drug-like prop-
erties (68). TTD and other databases (41,69) have already
provided target similarity and drug similarity searching fa-
cilities. Nonetheless, during practical applications, multiple
proteins or chemical libraries are frequently searched and
analyzed for the potential target and bioactive molecule. In
other words, there is a need for the facilities that can support
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Figure 2. A typical plot in TTD showing the chemical structure-based activity landscape for a target. All known drugs of a target are clustered based on
their structural similarity. Moreover, the binding activity (e.g. –log IC50, -logKi) for each drug against the target is represented by bar chart. The color of
the bar indicates the highest clinical status of the corresponding drug (approved, clinical trial, etc.). Users can move the mouse over the bar to get the basic
information (status, PubChem CID, activity, etc.) of each drug. The detailed drug data can be found by clicking that particular drug.
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Figure 3. A typical plot in TTD providing the information of the drug-like property-based profile for a target. All known drugs of a target are clustered
based on multiple (the top plot) or single (six plots at the bottom) drug-like properties, which is displayed using the hierarchical clustering map, heatmap
and bar plot. The bar color indicates the highest clinical status of the corresponding drugs (approved, clinical trial, etc.). The user can move the mouse
over the bar to find the basic data (status, PubChem CID, property, etc.) of that drug. The detailed drug data can be found by clicking that drug.
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multi-entry target and drug similarity searching. Therefore,
a multi-entry target similarity searching and a multi-entry
drug similarity searching facility was introduced, where the
users can upload a file of multiple protein sequences or
multiple molecular structures for finding TTD targets or
drugs that are similar in sequence or structure. Particularly,
the target similarity searching is based on the BLAST al-
gorithm. Input with one protein sequence or a batch up-
load of multiple sequences for similarity search is now avail-
able in the latest version of TTD. The identified targets are
ranked according to the BLAST outcomes. Moreover, the
drug similarity searching is based on Tanimoto coefficients.
The compound structure is first converted to PubChem Fin-
gerprint by PaDEL-descriptors (70), and the similarity be-
tween input compound and TTD drugs was then calculated.

CONCLUDING REMARKS

With the rapid advances in modern drug discovery (71–
75), there is an explosion of publications on revealing the
mechanism underlying both disease and therapeutics (76–
78), which in turn lead to the accumulation of huge amount
of data for drug discovery. The expanded coverage of these
data in TTD and other established databases collectively
provide the enriched resources for drug discovery and the
development of drug identification tool. The enriched data
further enhance the ability to analyze and explore these
derived data. Drug discovery efforts have benefited from
this cycle of technology advancements, expanded knowl-
edge and data, enhanced capabilities for the exploration of
these derived data, and the advancements to the next round
of the cycle. TTD and other established databases (79–81)
will continue to update the new pharmaceutical data and
play enhanced facilitating roles in current drug discovery
efforts.
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