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Abstract

The side effects of drugs present growing concern attention in the healthcare system. Accurately identifying the side effects
of drugs is very important for drug development and risk assessment. Some computational models have been developed to
predict the potential side effects of drugs and provided satisfactory performance. However, most existing methods can only
predict whether side effects will occur and cannot determine the frequency of side effects. Although a few existing methods
can predict the frequency of drug side effects, they strongly depend on the known drug-side effect relationships. Therefore,
they cannot be applied to new drugs without known side effect frequency information. In this paper, we develop a novel
similarity-based deep learning method, named SDPred, for determining the frequencies of drug side effects. Compared with
the existing state-of-the-art models, SDPred integrates rich features and can be applied to predict the side effect frequencies
of new drugs without any known drug-side effect association or frequency information. To our knowledge, this is the first
work that can predict the side effect frequencies of new drugs in the population. The comparison results indicate that
SDPred is much superior to all previously reported models. In addition, some case studies also demonstrate the
effectiveness of our proposed method in practical applications. The SDPred software and data are freely available at https://
github.com/zhc940702/SDPred, https://zenodo.org/record/5112573 and https://hub.docker.com/r/zhc940702/sdpred.

Key words: drug-side effect frequencies; deep learning; multi-similarities

Haochen Zhao is a PhD candidate in the School of Computer Science and Engineering, Central South University, China. His current research interests
include machine learning, deep learning and bioinformatics.
Shaokai Wang is a PhD candidate in the School of David R. Cheriton School of Computer Science, University of Waterloo, Canada. His current research
interests include machine deep learning, proteomics and bioinformatics.
Kai Zheng is a PhD candidate in the School of Computer Science and Engineering, Central South University, China. His current research interests include
machine learning, deep learning and bioinformatics.
Qichang Zhao is a PhD candidate in the School of Computer Science and Engineering, Central South University, China. His current research interests
include machine learning, deep learning and bioinformatics.
Feng Zhu is a Professor of the College of Pharmaceutical Sciences in Zhejiang University, China. His research laboratory (https://idrblab.org/) has been
working in the fields of bioinformatics, OMIC-based drug discovery, system biology and medicinal chemistry.
Jianxin Wang is the Dean and a Professor in the School of Computer Science and Engineering, Central South University, China. His current research
interests include bioinformatics and algorithms.
Submitted: 9 August 2021; Received (in revised form): 29 September 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab449/6412393 by N

ational Science & Technology Library R
oot Adm

in user on 08 February 2022

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab449
https://github.com/zhc940702/SDPred
https://github.com/zhc940702/SDPred
https://zenodo.org/record/5112573
https://hub.docker.com/r/zhc940702/sdpred


2 Zhao et al.

Introduction
The side effects of drugs refer to the additional adverse reactions
that patients produce when standard doses are used to prevent,
diagnose and treat diseases [1, 2]. Drug side effects are a heavy
burden for patients and a serious obstacle to the development
of new drugs, which has caused serious clinical burdens and
economic losses [3, 4]. According to an analysis of more than
1 million medical insurance beneficiaries’ visits [5], about one-
seventh of the visits are related to the drug side effects. In the
USA alone, severe drug side effects (drug toxicity) may cause
more than 100 000 deaths each year [6]. Drug side effects are
generally discovered by researchers through pharmacological
experiments or clinical observations. These methods usually
consume a lot of time and energy, and some minor or rare side
effects are not easy to be discovered [7, 8]. The side effects of
many drugs are not determined until many years after they have
been on the market [9]. For example, an appetite suppressant
called Fen–Phen withdrew from the market after the death of
many patients who takes the suppressant [10]. Therefore, it is
of great practical significance to analyze and predict the side
effects of the drugs by means of bioinformatics [11].

In recent years, many computational models have been
developed to predict the side effects of drugs based on
drug-related databases [12–18]. However, most methods only
explore whether a drug has one or more side effects and
cannot determine the frequency of side effects, which is the
central issue in drug risk-benefit assessment [19]. Accurate
estimation of the frequencies of drug side effects is not only
critical to patient care in clinical practice but also important
to pharmaceutical companies because it reduces the risk of
withdrawing drugs from the market [20, 21]. Although a few
methods have been proposed to predict the frequencies of
drug side effects, they all rely heavily on known drug-side
effect associations or frequencies. For example, based on the
known drug-side effect frequency information, Galeano et al. [22]
constructed a drug-side effect adjacency matrix and proposed
a new matrix factorization model to predict the frequencies of
potential drug side effects. The model achieves good predictive
performance, but when the given sample is a new drug without
information on side effects, the method that relies on known
drug-side effect frequencies will not be able to predict its
potential side effects. In addition, Zhao et al. [23] developed a
deep learning framework to predict the side effect frequencies of
drugs by integrating chemical structure similarity, known drug-
side effect frequency scores, side effect semantic similarity and
pre-trained word vector representations. The model’s core is to
construct a drug-side effect bipartite graph and learn the feature
representations of the node in the graph from the node’s direct
neighbors based on the attention mechanism. However, drugs
that do not belong to the training data set have no neighbor
nodes in the constructed heterogeneous graph, so the model
cannot predict the side effects of new drugs.

As discussed above, most previous methods focus on pre-
dicting the presence or absence of drug side effects, and a few
methods for predicting the frequencies of drug side effects but
cannot be applied to new drugs. Therefore, there is a strong
need for methods that can predict the side effects frequencies
of new drugs. In this paper, we develop a novel multi-task
learning framework, named SDPred, for drug-side effect asso-
ciations and frequencies by integrating the multi-correlation
between embedding of drugs and side effects. More specifically,
we first collect the raw features of drugs and side effects based
on the multiple types of similarity information, respectively.

Then, we perform projection operations on multiple similarity
vectors of the drugs and side effects to ensure the consistency
of the dimensions. Third, we use the outer product operation
for each drug similarity vector and side effect similarity vector
under the projection layer, explicitly capturing the pairwise cor-
relations between the drug and side effect vectors. Fourth, we
use a Convolution Neural Network (CNN) module to learn the
high-order correlations among vector dimensions from locally
to globally in a hierarchical way. Finally, we combine the drug
embeddings, side effect embeddings and high-order correlation
embeddings after the Multi-Layer Perceptron (MLP) and CNN
module to predict the potential drug-side effect associations
and frequencies. Compared with other state-of-the-art methods
by our experimental results, our method can predict the side
effect frequencies of the drugs without any known association
or frequency information and achieve better performance on
the datasets. Moreover, we perform ablation experiments and
some case studies to illustrate the predictive capability of our
model. All results show that our method could be an efficient
tool to identify and discover potential side effect associations
and frequencies of novel and known drugs.

Materials and Methods
Datasets

The dataset of the drug-side effect frequencies is first used in
Galeano et al.’s study [22]. The frequency values of the drug-
side effects are divided into five classes: very rare (frequency
= 1), rare (frequency = 2), infrequent (frequency = 3), frequent
(frequency = 4) and very frequent (frequency = 5). To collect the
drug-related information, we download the names, compound
IDs and Anatomical Therapeutic Chemical (ATC) codes of the
drugs in Galeano et al.’s study [22] from the STITCH database
[24], and then map the drugs to the Drugbank database [25]
based on the names and ATC codes. After removing some drugs
with no matching names and ATC codes in the above databases,
we finally get 757 drugs and their corresponding Simplified
Molecular Input Line Entry Specification (SMILES) sequences,
ATC codes and targets. In total, the benchmark dataset DS1 has
37 366 frequency items that containing 757 drugs and 994 side
effects.

In this paper, two application scenarios are considered: (i)
Discovering the missing association and frequency between
known drugs and side effects, where the drugs and side
effects are known, but their known association and frequency
information is not complete. (ii) Discovering the side effects
for new drugs, where the drugs are unknown, and there are
no records of any side effects related to the drug. For the first
scenario, the 10-fold cross-validation framework is used to
test the performance of our model. For the second scenario,
the independent test and de novo test are used to test the
performance of our model. In the independent test, we introduce
Zhao’s dataset [18] that built on the SIDER2 [26] database to test
the model. We find the overlapping drugs of the benchmark
dataset and Zhao’s dataset and then collect their side effect
frequency information from the benchmark dataset to construct
the training dataset DS2. The rest of the benchmark dataset,
named DS3, is used as the independent test dataset. The
statistical information of the three datasets is listed in Table 1.

Our model has two subtasks, one focuses on identifying the
associations of the drug-side effects, and the other focuses on
predicting the frequencies of the drug-side effects. Therefore,
the positive and negative datasets are also needed to train the
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Table 1. The details of the three datasets

Datasets Drugs Side effects Frequencies

DS1 757 994 37,366
DS2 588 994 31,431
DS3 169 994 5,935

prediction model. Let n and m be the number of different drugs
and side effects, respectively, SDrug = {d1, d2, . . . , dn} represent the
set of all n different drugs and Sside-effect = {s1, s2, . . . , sm} represent
the set of all m different side effects. The Cartesian product
SDrug × Sside-effect contained all pairs of drugs and side effects, in
which all known drug-side effect frequency pairs are positive
samples and the rest pairs were not labeled. We select all positive
samples to construct the Positive Sample Set (PSS) and sample
a matching number of unlabeled pairs randomly to construct
the negative sample set (NSS). For the convenience of the later
sections, we construct two adjacency matrices to represent the
two different relationships of drugs and side effects. For the
drug-side effects associations, we construct an m×n dimensional
matrix DSA as follows:

DSA(i, j) =
{

1 if di is related to sj in the dataset
0 otherwise .

(1)

For the drug-side effect frequencies, we also construct an m×
n dimensional matrix DSF. The value of the element’s value at
the corresponding position of matrix DSF is set to the frequency
value, otherwise 0.

Drug similarity

Here, we construct ten matrices to represent the similar-
ity between the drugs, respectively, based on chemical–
chemical associations, chemical structures, target proteins, pre-
trained word vectors, known drug-side effect associations and
frequencies (see Figure 1).

Chemical–chemical association

It has been reported that interactive mode between chemicals
is important information for drug-related prediction problems
[27]. Based on the fact that two chemicals with an interactive
relationship may have some common functions [28], we find
the compound IDs of the drugs and search the compound–
compound association scores from the STITCH database.
Then, we can collect five chemical–chemical association scores
named ‘Similarity’, ‘Experimental’, ‘Database’, ‘Text mining’ and
‘Combined score’ and use five adjacency matrices {SMDSimilarity,
SMDExperimental, SMDDatabase, SMDText, SMDCombined} ∈ R

n×n to
represent these five association scores between the drugs,
respectively. Since all chemical–chemical association scores in
STITCH range from 1 to 1000, we divide all scores by 1000 to
ensure that the similarity value of drugs is between 0 and 1. In
addition, we set the similarity value of each drug to itself as 1.

Drug structure similarity

The chemical substructure of drugs has been proved to be an
effective feature for the prediction of the drug’s side effects [29].
We collect the SMILES sequence of each drug from the STITCH
database and input the obtained sequence into the RDkit [30],
which is an open-source toolkit that uses machine learning

methods to generate compound descriptors and fingerprints.
Then, each drug can be represented by a 2048-dimensional
fingerprint vector and each dimension of the vector giving the
presence (1) or absence (0) of a particular functional group in
the molecule. The structure similarities between the two drugs
di and dj are computed according to the Jaccard score:

SMDStructure(i, j) = Jaccard score
(
di, dj

) =
∣∣FVi ∩ FVj

∣∣∣∣FVi ∪ FVj

∣∣ , (2)

where FVi and FVj represent the fingerprint vector of di and
dj, respectively, and SMDStructure(i, j) represents the fingerprint
similarity of drug di and dj.

Drug target similarity

The target protein information of the drug is obtained from
the DrugBank database. Each drug can be represented by an
847D target feature vector, and each dimension of the feature
vector represents a protein. If the drug targets a protein, the
corresponding dimension value of the feature vector is set to
1, otherwise, it is set to 0. The target similarities between two
drugs di and dj are computed according to the cosine similarity
coefficient:

SMDTarget(i, j) =
∑847

k=1 TVi
k × TVj

k√∑847
k=1

(
TVi

k

)2 ×
√∑847

k=1

(
TVj

k

)2
, (3)

where TVi and TVj represent the target vector of di and dj,
respectively, TVi

k and TVj
k represent the k-th dimension of the

TVi and TVj, respectively, and SMDTarget is an n × n matrix storing
the drug target similarity.

Drug word similarity

Here, we use an unsupervised machine learning method [31],
called Mol2vec, to learn the representations of drug molecular
substructures. The idea of the model is similar to the Word2vec
[32] model in the field of natural language process. Mol2vec can
learn the vector representation of the drug substructures and
then encode the drug into a vector by summing the vectors of
each substructure of the drug. We feed the SMILES sequences
of the drugs into the Mol2vec model and then get the 100-
dimensional pre-trained word vector for each drug. We use the
cosine similarity coefficient to calculate the word vector similar-
ity between two drugs based on the pre-trained word vectors as
follows:

SMDWord(i, j) =
∑100

k=1 WVi
k × WVj

k√∑847
k=1

(
WVi

k

)2 ×
√∑847

k=1

(
WVj

k

)2
, (4)

where WVi and WVj represent the word vector of di and dj,
respectively, WVi

k and WVj
k represent the kth dimension of the

WVi and WVj, respectively, and SMDWord is an n×n matrix storing
the drug word similarity.

Drug interaction profile similarity

Based on the assumption that similar drugs tend to show sim-
ilar interaction and non-interaction patterns with side effects,
the drug association profile similarity matrix SMDDIPA and fre-
quency profile similarity matrix SMDDIPF are obtained based on
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Figure 1. Data collection flowchart. Ten drug similarity matrices and four side effect similarity matrices are created from the ADReCS, SIDER, STITCH and DrugBank

databases, where SMESemantic is constructed based on the ADReCS; SMEWord, SMEDIPF, SMEDIPA, SMDDIPA and SMDDIPF are constructed based on the SIDER; SMDStructure,

SMDWord, SMDSimilarity, SMDExperimental, SMDDatabase, SMDText and SMDCombined are constructed based on the STITCH and SMDTarget is constructed based on the

DrugBank.

the known drug-side effect associations and frequencies, respec-
tively. The construction procedures of SMDDIPA and SMDDIPF are
described as follows. Firstly, we define PAdi and PFdi to represent
the association and frequency profile of di, respectively. PAdi is
a binary vector encoding the presence or absence of association
between drug di and all side effects, i.e. the ith row of DSA. PFdi is
a vector encoding the presence or absence of frequency between
drug di and all side effects, i.e. the ith row of DSF. Then, we
introduce the cosine similarity coefficient for the association
and frequency profile of drugs to calculate the similarity scores
between drugs, respectively.

SMDDIPA(i, j) =
∑m

k=1 PAk
di × PA

dj

k√∑m
k=1

(
PAdi

k

)2 ×
√∑m

k=1

(
PA

dj

k

)2
, (5)

where PAdi
k and PA

dj

k represent the kth dimension of the PAdi and
PAdj , respectively.

SMDDIPF(i, j) =
∑m

k=1 PFdi
k × PF

dj

k√∑m
k=1

(
PFdi

k

)2 ×
√∑m

k=1

(
PF

dj

k

)2
, (6)

where PFdi
k and PF

dj

k represent the kth dimension of the PFdi and
PFdj , respectively.

Side effect similarity

Here, we construct four matrices to represent the similarity
between the side effects, respectively, based on the seman-
tic value, pre-trained word vectors and known drug-side effect
associations and frequencies (see Figure 1).

Side effect semantic similarity

Here, we calculate the side effect semantic similarity by using
the existing measurement [23]. For each side effect, we construct
a directed acyclic graph (DAG), which contains all the seman-
tic descriptors related to the side effects. Figure 2 shows the
DAGs of two side effects ‘Cerebral Infarction (CI)’ and ‘Angina
Pectoris (AP)’. The DAG of a side effect such as ‘AP’ is denoted
as DAG(AP) = (TAP, EAP), where TAP is a set that includes all the
ancestor descriptions of ‘AP’ and itself, and EAP is a set of edges
connecting these descriptions. The contribution of descriptor t
in DAG(AP) to the ‘AP’ is calculated by:

DAP(t) =
{
1, if t = AP
max {θ × DAP (t∗) | t∗ ∈ children of t}, otherwise

,

(7)

where θ is a semantic contribution factor for the edges linking
node t with its child t∗. As suggested in the study [23], it is set to
0.5. Then, the semantic value of ‘AP’ can be obtained by summing
the contribution from all descriptors in DAG(AP). The semantic
similarity between the side effects si and sj are calculated based
on the semantic value as follows:

SMESemantic (i, j) =
∑

t∈
(
Tsi

∩Tsj

) (
Dsi

(t) + Dsj
(t)

)
∑

t∈Tsi
Dsi

(t) + ∑
t∈Tsj

Dsj
(t)

, (8)

where SMEsemantic is an m × m matrix storing the side effect
semantic similarity.

Side effect word similarity

The side effect word vector is calculated using the method
proposed by Zhao et al. [23]. Each side effect can be represented
as a pre-trained 300D word vector. Then, the cosine correla-
tion coefficient is used to measure the side effect word vector
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Figure 2. The side effect DAGs of CI and AP.

similarity of two side effects si and sj, which is defined as:

SMEWord(i, j) =
∑300

k=1 SWVi
k × SWVj

k√∑300
k=1

(
SWVi

k

)2 ×
√∑300

k=1

(
SWVj

k

)2
, (9)

where SWVi and SWVj represent the word vector of si and sj,
respectively, SWVi

k and SWVj
k represent the kth dimension of the

SWVi and SWVj, respectively, and SMEWord is an m × m matrix
storing the side effect word similarity.

Side effect interaction profile similarity

The construction of the interaction feature similarity matrices
for side effects is similar to drugs. We define PAsj and PFsj to
represent the association and frequency profile of sj, respec-
tively. PAsj is a binary vector encoding the presence or absence
of association between sj and all drugs, i.e. the ith column
of DSA. PFsj is a vector encoding the presence or absence of
frequency between sj and all drugs, i.e. the ith column of DSF.
The side effect association profile similarity matrix SMEDIPA and
frequency profile similarity matrix SMEDIPF can be calculated as
follows:

SMEDIPA(i, j) = �n
k=1PAsi

k × PA
sj

k√∑n
k=1

(
PAsi

k

)2 ×
√∑n

k=1

(
PA

sj

k

)2
, (10)

where PAsi
k and PA

sj

k represent the kth dimension of the PAsi and
PAsj , respectively.

SMEDIPF(i, j) =
∑n

k=1 PFsi
k × PF

sj

k√∑n
k=1

(
PFsi

k

)2 ×
√∑n

k=1

(
PF

sj

k

)2
, (11)

where PFsi
k and PF

sj

k represent the kth dimension of the PFsi and
PFsj , respectively.

SDPred

The key to developing a model that can accurately predict drug-
side effect associations and frequencies is in (i) how to represent
a drug and a side effect and (ii) how to model their interac-
tion based on the representation. After obtaining the multiple
similarities of drugs and side effects, we use the deep learning
framework to build a novel multi-task model to predict the
associations and frequencies between drugs and side effects.
The model can be described as six steps (see Figure 3): (i) Col-
lecting the features of the drugs and side effects based on the
multiple types of similarities; (ii) Projecting the similarity vectors
of different types of drugs and side effects into the vector space
of the same dimension to represent the drugs and side effects;
(iii) Using the outer product operations on each drug and side
effect vector to obtain the interaction maps; (iv) Using the CNN
module to extract the interaction embeddings from the inter-
action maps; (v) Integrating multi-type interaction embeddings,
drug and side effect updated vectors to learn the drug-side effect
pair representation vectors and (vi) Predicting the association
scores of the drug-side effect pairs. If the drug-side effect pairs
are predicted to be associated, predicting the frequency score
of the drug-side effect pairs. Next, we take drug-side effect pair
di − sj as an example and discuss the specific implementation
details of each step.

In step 1, we define the drug similarity set Ssm
drug =

{SMDCombined, SMDText, SMDSimilarity, SMDExperimental, SMDDatabase,
SMDStructure, SMDTarget, SMDWord, SMDDIPA, SMDDIPF} ∈ R

n×n and side
effect similarity set Ssm

side-effect = {SMESemantic, SMDWord, SMDDIPA,
SMDDIPF} ∈ R

m×m to represent multiple types of the drug and
side effect similarities, respectively. Then, we collet the features
of the drug di and side effect sj based on Ssm

drug and Ssm
side-effect,

respectively. Concretely, for the kth drug similarity type (the kth
element in Ssm

drug), the drug di can be described as a similarity
vector Xk

di
as follows:

Xk
di

= Ssm
drug(k)[i] =

(
vk

1, . . . , vk
i , . . . , vk

h

)
, (12)

where Ssm
drug(k)[i] represents the ith row of the kth element in Ssm

drug

and h represents the dimension of Ssm
drug(k)[i]. Similarly, for the lth

side effect similarity type (the lth element in Ssm
side-effect), the side
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Figure 3. The architecture of SDPred.

effect sj can be described as a similarity vector Xl
sj

as follows:

Xl
sj

= Ssm
side-effect(l)[j] =

(
ul

1, . . . , ul
j, . . . , ul

e

)
, (13)

where Ssm
side-effect(l)[j] represents the jth row of the lth element in

Ssm
side-effect and e represents the dimension of Ssm

side-effect(l)[j].
In step 2, according to the fact that the drugs and side effects

have rich features and considering the heterogeneity of drugs
and side effects, we project each drug and side effect similarity
vector into the same vector space. The kth similarity vector of
di and the lth similarity vector of sj capture the kth interaction
relationships between di and other drugs and lth interaction
relationships between sj and other side effects, respectively.
Therefore, we design p and q (in this paper, p=10, q=4) similarity-
specific transformation matrices for the drugs and side effects,
respectively, to extract different features that correspond to
particular interaction relationships, i.e. {P1, P2, . . . , Pp} ∈ R

h×r and
{Q1, Q2, . . . , Qq} ∈ R

e×r, where r is a hyperparameter to represent
the transformed dimensions of each similarity-specific vector.
For the drug di, its kth drug similarity-specific vector Hi

k can be
calculated as follows:

Hi
k = PkXk

di
. (14)

Similarly, for side effect sj, its lth side effect similarity-specific
vector Ej

l can be calculated as follows:

Ej
l = QlXl

sj
. (15)

Several recent efforts on neural network models [33, 34]
have demonstrated that better prediction performance can
be obtained by learning the interaction function from data.
In step 3, we use the outer product operations between each
drug similarity-specific vector and side effect similarity-specific
vector. For the kth drug similarity-specific vector Hi

k and lth
side effect similarity-specific vector Ej

l, the interaction map

Intermapk,l
i,j can be calculated as follows:

Intermapk,l
i,j = Hi

k ⊗ Ej
l, (16)

where ⊗ represents the outer product operation and Intermapk,l
i,j

is a r × r matrix. Here, we can get p × q different interaction
maps to represent drug-side effect pairs di − sj. This is the
core design of the SDPred framework to ensure that the model
can capture the interaction relationships between drugs and
side effects without any known drug-side effect associations or
frequencies. The outer product operation is more meaningful
than the simple concatenation operation because it only retains
the original information in embeddings without modeling any
interaction [35].

In step 4, we treat the pairwise interactions encoded in
the multiple interaction maps as the local features of multiple
images. As we all known, CNN has achieved great success in the
field of computer vision. Here, we use a CNN module to extract
the interaction embeddings between drugs and side effects from
the multiple interaction maps. In the CNN module, each CNN
layer includes three operations: (i) convolution operation; (ii)
batch normalization operation and (iii) activation operation. The
convolution operation can be described as follows:

xi
Con = wi

Con ◦ ti−1
Con + bi

Con , (17)

where wi
Con represents the weight vector of the ith layer con-

volution kernel, ti−1
Con represents the output of (i − 1)th layer,

the arithmetic symbol ◦ represents the convolution operation,
and bi

Con represents the offset vector of the ith layer. The Batch
Normalization (BN), as an important achievement in the field
of deep learning in recent years, has been widely proven its
effectiveness and importance [36, 37]. The process of the BN of
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the ith layer is described as follows:

xi
B N = B N

(
xi

)
= α√

Var [xi] + ε
· xi +

(
β − αE

[
xi

]
√

Var [xi + ε]

)
, (18)

where α, β and ε are parameters to be learned, Var[] is the
variance operation and E[] is the mean operation. In this paper,
we use the rectified linear unit (ReLU) function to perform the
activation operation, which sets negative value to zero

xi
ReLU = ReLU

(
xi

BN

)
=

{
0, if xi < 0
xi

BN, otherwise
. (19)

The CNN module in SDPred has six hidden CNN layers, where the
number of feature maps is 32, the stride is 2 and the convolution
kernel is (2×2) in each hidden layer.

To obtain the high-order nonlinear relationships between the
drug features and the side effect features, respectively. In step 5,
we use the MLP module to extract the embeddings from features
of drugs and side effects separately. The forward propagation
process of the MLP module in this paper can be defined as
follows:

t1
MLP = ReLU

(
w1

MLPt0
MLP + b1

MLP

)
(20)

t2
MLP = ReLU

(
w2

MLPt1
MLP + b2

MLP

)
(21)

· · · (22)

tg
MLP = Re LU

(
wl

MLPtl−1
MLP + bl

MLP

)
, (23)

where g is the index of a hidden layer, w1
MLP, w2

MLP and wl
MLP are

the weight matrices, and b1
MLP, b2

MLP and bl
MLP are the biases. We

obtain the di and sj updated features Xsum
di

and Xsum
sj

by splicing
all similarity-specific vectors of the di and sj and input them into
two similar MLP modules, respectively. Then, we concatenate
the multiple types of interaction embeddings after the flattening
operation, di and sj updated features to learn the representation
vector of the di − sj pair

Xsum
di−sj

=
(
Xsum

di

∥∥∥Xintermap di−sj

∥∥∥ Xsum
sj

)
, (24)

where Xintermap
di−sj

is the interaction embeddings after the flattening

operation.
In step 6, we adopt two MLP modules for the prediction

tasks. The first MLP module is predicting the association scores
between the di and sj. If the di and sj are predicted to be asso-
ciated, the second MLP module is used to predict the frequency
scores of the di − sj pair. All MLP modules used in this article
have the same structure. Each module has three fully con-
nected hidden layers, and the number of neurons in each hidden
layer is r.

Model training

Our goal is to minimize the difference between the predicted
score and the known drug-side effect associations and frequen-
cies. Therefore, we use the mean square loss function to train
the model. For the task of determining the associations between
the drugs and side effects, the loss function is defined as follows:

Loss1 =
M1+M2∑

i=1

(
Pre1

i − Y1
i

)2
, (25)

where M1 and M2 represent the number of positive and negative
samples, respectively, the Pre1

i and Y1
i represent the true associa-

tion label and predicted label of the sample i in the PSS and NSS.
For the task of determining the frequencies between the drugs
and side effects, the loss function is defined as follows:

Loss2 =
M1∑
i=1

(
Pre2

i − Y2
i

)2
, (26)

where Pre2
i and Y2

i represent the true frequency label and pre-
dicted label of the sample i in the PSS. Some studies have shown
that regularization can effectively prevent model overfitting; we
employ the L2 regularization to our loss function. In addition, we
only predict the frequency scores of drug-side effect pairs that
are predicted to have association relationships. Therefore, we
dynamically switch between one of two objective training losses
based on whether there are available training examples (in the
batch and for the current iteration) for each task. We train on two
objectives jointly and the overall loss function becomes

Losstotal =
{

Loss1 + μ
∑M3

i=1 ‖θi‖2 , if the sample is positive
Loss1 × Loss2 + μ

∑M4
i=1 ‖θi‖2 , otherwise

, (27)

where M3 and M4 represent the number of the parameters, and
μ is a positive constant that determines the degree of regular-
ization influence. We train the model for a maximum of 100
epochs and plot the training loss curve in Figure 4. To avoid the
overfitting problems, we randomly drop out hidden units in each
fully connected layer.

There are some important hyperparmeters in our model,
namely the learning rate, the batch size, the dropout rate, r and μ.
These hyperparameters are determined by grid-search on DS1. In
grid-search, the learning rate is in [1e−1, 1e−2, 1e−3, 1e−4, 1e−5],
the batch size is in [8, 16,32, 64, 128, 256], the dropout rate is in
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], r is in [8, 16, 32, 64, 128] and
μ is in [1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5]. In general, the learning
rate directly determines the performance, and the batch size is
correlated with the learning rate. Therefore, we first determine
the learning rate and the batch size in a grid-search. After the
learning rate and batch size are fixed, we select the dropout rate
and μ to improve the robustness of our model and determine
the value of r. In total, the optimized learning rate, batch size,
dropout rate, r and μ are 1e−4, 128, 0.5, 32 and 1e−5, respectively,
and the detailed experimental results of hyper-parameters are
shown in Supplementary Tables S1–S5, see Supplementary Data
available online at http://bib.oxfordjournals.org/. In addition, we
use the Adam optimization algorithm [38] to update the param-
eters of the model, which has shown excellent performance in
deep learning tasks. We save the model with the current best
performance before further training. If the best performance has

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/1/bbab449/6412393 by N

ational Science & Technology Library R
oot Adm

in user on 08 February 2022



8 Zhao et al.

Figure 4. The loss function of our model at 100 epochs.

Table 2. Performance comparison of different methods on the DS1

Model name AUROC AUPRC RMSE MAE

Galeano’s method 0.9161 0.9165 1.3212 0.9642
MGPred 0.9234 0.9125 0.6510 0.4891
SDPred 0.9452 0.9367 0.5794 0.4212

not improved after 5 consecutive steps, the training will early
stop.

Results
Evaluation metrics

To evaluate the performance of SDPred, we perform three kinds
of computational experiments, including the 10-fold cross-
validation, independent test, and de novo test. When the 10-fold
cross-validation is implemented, each drug-side effect pair in
PSS and NSS are divided randomly into 10 subsets, respectively.
In the kth fold, the kth positive and negative subset are set
as the testing set for model testing and the remaining nine
positive and negative subsets are set as the training set for
model training. The de novo test is designed to explore the
performance of the model under cold boot conditions. As far
as we know, none of the existing models for predicting the side
effect frequencies of drugs can be applied to new drugs. In the de
novo test, each drug in the dataset is left out in turn as the test
sample and all known associations and frequencies between
the drug and all existing side effects are deleted. We predict
the association and frequency scores between the test drug and
all side effects in the datasets. In addition, in the 10-fold cross-
validation, the ten different drug similarities and four different
side effect similarities are applied to construct the interaction
maps. However, there is no information about the side effects of
new drugs. Therefore, we remove two drug similarities matrices
(SMDDIPA and SMDDIPF) and two side effect similarities matrices
(SMEDIPA and SMEDIPF) in the de novo test and independent test.

Our model can simultaneously predict the presence/absence
associations and frequencies of drug side effects. For the task
of predicting the drug-side effect associations, we use the Area

Under the Receiver Operating Characteristic Curve (AUROC) and
The Area Under the Precision-Recall Curve (AUPRC) to assess the
performance of our model and other methods in comparison
and a higher rank for the positive samples indicated better the
prediction performance of the method. For the task of predicting
the side effect frequencies of drugs, we use the Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) to assess
the performance of our model and other methods in comparison
and a lower error between the predicted value and true value for
positive samples indicated better the prediction performance of
the method.

Performance comparison with other methods

To evaluate the performance of the SDPred model, we compare
it with two state-of-the-art methods based on the benchmark
dataset DS1, including Galeano’s method and MGPred. For com-
parison fairness, the hyperparameters in Galeano’s method and
MGPred are set according to the optimal value as suggested by
the authors. Table 2 and Figure 5 show the comparison results
of Galeano’s method, MGPred and SDPred. Our method gets 2.3,
2.7, 11.0 and 13.9% improvements in AUROC, AUPRC, RMSE and
MAE over the second best MGPred. As shown by the results,
even though MGPred utilizes the neural network, it only collects
information from three angles and does not reasonably extract
the interaction information between drugs and side effects, so
its performance is not as good as our methods. In addition, a
Wilcoxon test to evaluate the prediction results of all drugs in
the benchmark dataset reveals that SDPred significantly outper-
forms the other methods. These results are observed using a P-
value threshold of 0.05, with SDPred showing better performance
in terms of both AUROCs, AUPRCs, RMSEs and MAEs (see Table 3).

De novo test

SDPred is an end-to-end deep learning method that can do two
jobs: predicting potential side effect frequencies of an approved
drug and predicting side effect frequencies of a new drug can-
didate. For the second work, we use the independent test and
de novo test to evaluate the prediction performance of the
model. In the independent test, the validation of the side effect
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Figure 5. The ROC and PR curves of different models.

Table 3. Results of Wilcoxon test on SDPred and two other contrast
methods for 757 drugs on the DS1

SDPred and another method Galeano’s method MGPred

P-value of AUROC 4.18 × 10−69 2.54 × 10−21

P-value of AUPRC 4.91 × 10−43 2.51 × 10−62

P-value of RMSE 5.67 × 10−119 1.89 × 10−05

P-value of MAE 5.12 × 10−117 2.30 × 10−09

Table 4. AUROC, AUPRC, RMSE and MAE values of SDPred in inde-
pendent and de novo tests

Tests AUROC AUPRC RMSE MAE

Independent test 0.8457 0.8095 0.8391 0.6057
De novo test 0.8937 0.4285 0.7553 0.6092

frequency prediction performance is performed based on the
independent test datasets DS2 and DS3. Since Galeano’s method
and MGPred are strongly dependent on the known drug-side
effect association and frequency information, the performance
of the models cannot be tested using a completely independent
dataset. Therefore, we only evaluate the performance of SDPred
and the results are listed in Table 4. In the de novo test, the
validation of the side effect frequency prediction performance
is performed based on the benchmark dataset DS1. Figure 6A–D,
respectively, show the distribution of RMSE, MAE, AUPRC and
AUROC values of each drug in the de novo test.

Analysis of the contribution of each similarity

To build the SDPred, we introduce ten different drug similarities
and four different side effect similarities. The feature informa-
tion of new side effects and drugs may not be complete. The
determination of the similarity with the most contribution for
SDPred is an interesting problem. Accordingly, each drug or side
effect similarity is singled out, and the nine drug or three side
effect remaining similarities are used to extract drug features
via the outer product, thereby constructing an SDPred. Thus,
14 SDPred models based on different similarity combinations
are obtained, and the same hyperparameters mentioned in the
Method section are used. These classifiers are also evaluated

Table 5. Performance of SDPred when one drug similarity is removed

Excluded similarity AUROC AUPRC RMSE MAE

SMDSimilarity 0.9385 0.9362 0.6051 0.4436
SMDExperimental 0.9410 0.9374 0.5837 0.4363
SMDDatabase 0.9406 0.9381 0.6013 0.4433
SMDText 0.9446 0.9408 0.5771 0.4281
SMDCombined 0.9397 0.9371 0.5887 0.4319
SMDStructure 0.9386 0.9356 0.5834 0.4404
SMDTarget 0.9419 0.9391 0.5931 0.4341
SMDWord 0.9429 0.9391 0.5766 0.4267
SMDDIPA 0.9406 0.9376 0.5959 0.4391
SMDDIPF 0.9314 0.9269 0.6281 0.4545

via 10-fold cross-validation based on the benchmark dataset
DS1 and the performance evaluation results are listed in Tables
5 and 6. The performance of the SDPred with few similarity
information is lower than the original SDPred with all 14 dif-
ferent similarities, suggesting that different types of similarity
information provide less or more contributions. After careful
checking, for the drug similarities, the SDPred without SMDDIPF

yielded the lowest AUROC and AUPRC, but the highest RMSE and
MAE. For the side effect similarities, the SDPred without SMEDIPA

yielded the lowest AUROC and AUPRC, but the highest RMSE and
MAE. Therefore, such two types of similarities provide the most
contribution. On the other hand, these results also prove that
our model can achieve good predictive performance when less
information about drugs and side effects is known.

Ablation experment

For improving the performance of models in predicting drug
side effect frequencies, our proposed model introduces the outer
product operations between each drug similarity-specific vector
and side effect similarity-specific vector and generates multiple
interaction maps. To illustrate the effect of the outer prod-
uct operation and interaction maps, we perform the ablation
experiments using the 10-fold cross-validation. We compare our
model with SDPred only using interaction embeddings (SDPred-
Inter) and a simple MLP model with no interaction embed-
dings (SDPred-MLP) based on the benchmark dataset DS1. Table 7
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Table 6. Performance of SDPred when one side effect similarity is
removed

Excluded similarity AUROC AUPRC RMSE MAE

SMESemantic 0.9388 0.9367 0.6065 0.4462
SMEWord 0.9394 0.9355 0.6044 0.4450
SMEDIPA 0.9303 0.9266 0.6101 0.4484
SMEDIPF 0.9409 0.9366 0.5788 0.4312

Figure 6. The distribution of RMSE, MAE, AUPRC and AUROC values of each drug

in the de novo test.

Table 7. Performance comparison of ablation experiment on DS1

Model name AUROC AUPRC RMSE MAE

SDPred-MLP 0.9135 0.9129 0.6784 0.5067
SDPred-Inter 0.9416 0.9378 0.5872 0.4232
SDPred 0.9452 0.9426 0.5794 0.4212

shows the comparison results and we can find SDPred outper-
forms other methods, verifying the positive effect of using outer
product above the embedding layer.

Case studies

To evaluate the capability of SDPred for predicting side effect
frequencies of drugs in practical applications, we perform case
studies of three drugs, including escitalopram, paroxetine and
gabapentin and then analyzed their top 10 candidate side effects.

Table 8. The top 10 ranks of predictive side effects for drug escitalo-
pram

Rank Side effect Frequency score Evidence

1 influenza 3.6469 [41]
2 urinary

retention
3.1214 SIDER

3 salivary
hypersecretion

2.0950 NA

4 upper
respiratory
tract infection

3.6561 [42]

5 thrombocytopenia 2.7619 SIDER
6 gait

disturbance
3.1590 SIDER

7 hyperaesthesia 2.8634 NA
8 dysarthria 3.1810 SIDER
9 diplopia 3.1683 SIDER
10 ecchymosis 2.8793 SIDER

Table 9. The top 10 ranks of predictive side effects for drug
gabapentin

Rank Side effect Frequency score Evidence

1 dehydration 2.8586 OFFSIDES
2 ataxia 3.3720 OFFSIDES
3 diplopia 3.1268 [43]
4 musculoskeletal

stiffness
3.1067 OFFSIDES

5 vaginal infection 3.0857 NA
6 muscle contractions

involuntary
2.8557 NA

7 gastrooesophageal
reflux disease

3.0137 NA

8 abdominal distension 2.9997 OFFSIDES
9 neuralgia 2.6622 OFFSIDES
10 delusion 2.6524 SIDER

The samples in the PSS and NSS are conducted to train the
model, and the remaining drug-side effect pairs in the bench-
mark dataset are used as the test data. We list the escitalopram
(Drugbank ID: DB01175), gabapentin (Drugbank ID: DB00996) and
paroxetine (Drugbank ID: DB00715) top 10 candidate side effects
and top 10 drug-side effect associations according to the pre-
diction scores and confirmed them by the SIDER database [39],
OFFSIDES database [40] and recently published experimental
studies. The SIDER database contains information on marketed
medicines and their recorded adverse drug reactions. The OFF-
SIDES database contains complementary information with the
SIDER database and adds predictions for protein targets and drug
indications. The top 10 ranked candidate side effects for each
drug are given in Tables 8–10. We can find that SDPred has good
predictive power for potential drug-related side effects and can
narrow the scope of candidates for biological experiments.

Discussion and Conclusion
While drugs are treating patients’ diseases, they may also have
side effects that endanger the lives and health of patients. Rea-
sonable analysis and prediction for the side effect frequencies
of drugs can not only protect the health of patients but also
have important implications for drug development. In this paper,
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Table 10. The top 10 ranks of predictive side effects for drug
paroxetine

Rank Side effect Frequency score Evidence

1 psoriasis 2.4595 [44]
2 muscle twitching 3.0244 [45]
3 apathy 2.8770 OFFSIDES
4 flat affect 2.8852 OFFSIDES
5 hyperreflexia 2.5753 NA
6 lacrimal disorder 2.6172 NA
7 aggression 3.3847 SIDER
8 cholecystitis 2.3059 NA
9 hypotonia 2.6206 OFFSIDES
10 disorientation 3.2895 SIDER

we develop a new deep learning method of integrating multiple
similarities of drugs and side effects for predicting the side
effect frequencies of drugs. SDPred introduces the outer product
operation for integrating multiple similarities and extracting
useful features. Existing methods predict new associations and
frequencies based on the known side effect information of drugs.
However, the relationships between side effects and new drugs
are unclear. It is difficult to capture sufficient association or
frequency information, leading to insufficiently trained classifi-
cation methods. In contrast, SDPred is a new end-to-end method
based on multiple similarities and shares the advantages of both
the matrix decomposition methods and deep learning meth-
ods and do not entirely dependent on the known relationships
between drugs and side effects. The results of cross-validation
and de novo experiments indicate that our method is capable
of predicting side effect frequencies of both existing and novel
drugs.

Although SDPred has demonstrated effective performances
in predicting side effect frequencies of drugs, there is still room
for improvement. Firstly, SDPred relies heavily on the similarity
information, but the information of new side effects and drugs
may not be complete. Secondly, the number of training samples
is crucial for prediction and feature selection. But collecting side
effect frequency information is difficult and the missing and
noisy data could bring a negative impact on side effect frequency
prediction. In the future, we plan to integrate gene expression
information into our model and employ the oversampling algo-
rithm to solve the problem of the insufficient number of positive
samples.

Key points
• We propose a novel similarity-based deep learning

architecture, named SDPred, for drug side effect fre-
quency prediction by integrating the multiple similar-
ities between pairwise drugs and pairwise side effects.

• The outer product operation is the core design of
SDPred to ensure that the model can capture the inter-
action relationships between drugs and side effects
without any known drug side effect associations or
frequencies.

• SDPred is the first model that successfully addresses
the problem of predicting the side effect frequencies
of new drugs without known side effect frequency
information.

Supplementary Data

Supplementary data are available online at http://bib.oxfo
rdjournals.org/.
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